
Web Technologies

Unit 1: Contents

UNIT-I: HTML :Basic Syntax, Standard
HTML Document Structure, Basic Text Markup,
Images, Hypertext Links, Lists, Tables, Frames
Forms.

CSS: Cascading style sheets : Levels of Style
Sheets, Style Specification Formats, Selector
Forms, Property value forms, Font Properties,
List Properties, color, Alignment of Text

Introduction to HTML

• HTML is the standard markup language for Web pages.

• With HTML you can create your own Website.

• HTML is easy to learn - You will enjoy it!

• HTML consists of a series of elements

• HTML elements tell the browser how to display the
content

• HTML elements label pieces of content such as "this is a
heading", "this is a paragraph", "this is a link", etc.

HTML tags

• HTML markup tags are usually called HTML tags

• HTML tags are keywords (tag names) surrounded by
angle brackets like <html>

• HTML tags normally come in pairs like and

• The first tag in a pair is the start tag, the second tag is
the end tag

• The end tag is written like the start tag, with a forward
slash before the tag name

• Start and end tags are also called opening tags and
closing tags

History of HTML

Structure of HTML Page

Some Important HTML Tags

HTML Example

<!DOCTYPE html>
<html>
<body>
<h1>My First Heading</h1>
<p>My first paragraph.</p>
</body>
</html>

Explanation

The DOCTYPE declaration defines the document
type

The text between <html> and </html> describes
the web page

The text between <body> and </body> is the
visible page content

The text between <h1> and </h1> is displayed as
a heading

The text between <p> and </p> is displayed as a
paragraph

What is HTML?

• HTML, otherwise known as HyperText
Markup Language, is the language used to
create Web pages

• Using HTML, you can create a Web page
with text, graphics, sound, and video.

• Hyper means we can navigate from one
web page to another page where they need
not be linear pages.

Tags
• HTML is written in the form of tags

• A tag is a keyword enclosed by pair of angle
brackets (Example: < >)

• Where some text is placed between tags.

• HTML elements have two basic properties

Attributes

contents

More Tags...

• The opening and closing tags use the same
command except the closing tag contains
and additional forward slash /

• For example, the expression

Warning would cause the word
‘Warning’ to appear in bold face on a Web
page.

• There are some tags which has opening tag
but not closing tag, also known as Empty
HTML Elements.

Eg -
,<hr> i.e Break and Horizontal rule

Nested Tags

• Whenever you have HTML tags within other
HTML tags, you must close the nearest tag
first

• Example:

<h1> <iI> The Nation </Ii> </h1>

Structure of a Web Page

• All Web pages share a
common structure

• All Web pages should
contain a pair of
<HTML>, <HEAD>,
<TITLE>, and <BODY>
tags.

<html>

<head>

<title> Example </title>

</head>

<body>

This is where you would include
the text and images on your Web
page.

</body>

</html>

Comment Statements

• Comment statements are notes in the HTML
code that explain the important features of
the code

• The comments do not appear on the Web
page itself but are a useful reference to the
author of the page and other programmers

• To create a comment statement use the
<!-- Write ur comment here --> tags

HTML Elements

An HTML element is defined by a start tag,
some content, and an end tag.

HTML Elements

The HTML element is everything from the
start tag to the end tag:

<tagname>Content goes here...</tagname>

Examples of some HTML elements:

<h1>My First Heading</h1>

<p>My first paragraph.</p>

HTML Attributes
• All HTML elements can have attributes

• Attributes provide additional information about
elements

• Attributes are always specified in the start tag

• Attributes usually come in name/value pairs
like: name="value"

For example:

The href Attribute

The <a> tag defines a hyperlink.
The href attribute specifies the URL of the page the
link goes to:

Visit W3Schools

The <TITLE> Tag

• Choose the title of your Web page carefully;
The title of a Web page determines its ranking
in certain search engines

• The title will also appear on Favorite lists,
History lists, and Bookmark lists to identify
your page

Headings

• Web pages are typically organized into sections
with headings; To create a heading we use the
expression

• <Hn>….</Hn> where n is a number between 1
and 6

• In this case, the 1 corresponds to the largest
size heading while the 6 corresponds to the
smallest size

Text Formatting

• Manipulating text in HTML can be tricky;
Oftentimes, what you see is NOT what you get

• For instance, special HTML tags are needed to
create paragraphs, move to the next line, and
create headings

Text Formatting Tags

 Bold Face

 This is also same like bold but shows
importance

<i> Italics </i>

<u> Underline </u>

<p> New Paragraph </p>

 Next Line

Example on Text Formatting Tags

<!DOCTYPE html">
<head>
<title>Example on Text Formatting Tags</title>
</head>
<body>
<p> Bold Face

 this is also same like bold but shows importance </p>

<p><i>The text will appear as Italics </i> </p>
<p><u>This text will appear in Underline </u> </p>
<p> New Paragraph will be started from this tag,

we can write the paragraph as

many number of lines and sentences </p>

</body>
</html>

Other Formatting Tags

<pre>- Preformatted Text

<mark> - Marked text

<small> - Smaller text

 - Deleted text

<ins> - Inserted text

<sub> - Subscript text

<sup> - Superscript text

pre: Defines preformatted text

The <pre> tag defines preformatted text.

• Text in a <pre> element is displayed in a fixed-
width font, and the text preserves both spaces
and line breaks. The text will be displayed
exactly as written in the HTML source code.

<mark>- Marked text

The HTML <mark> element defines
text that should be marked or
highlighted:

Example

<p> Please come with your <mark>
Observation and Record </mark> for
your WT Lab

</p>

<small> Tag

• The HTML <small> element defines smaller
text:

Example:

<h6> this will display heading is small font </h6>

<small> This will display text in very small
</small>

Note: h6 is smaller than compared with small
attribute.

 - Deleted Text tag

The HTML element defines text that
has been deleted from a document. Browsers
will usually strike a line through deleted text:

Example:

<p>My Interested Job is
Software Government. </p>

<ins> - Inserted text

The HTML <ins> element defines a text
that has been inserted into a document.
Browsers will usually underline inserted text:

Example:

<p>

My Interested Job is
Software <ins>Government </ins>.
</p>

<sub> - Subscript text

The HTML <sub> element defines subscript
text. Subscript text appears half a character
below the normal line, and is sometimes
rendered in a smaller font. Subscript text can
be used for chemical formulas, like H2O:

Example:

<p>This is an example on
_{subscripted} text.</p>

HTML <sup> Element

The HTML <sup> element defines
superscript text. Superscript text appears half
a character above the normal line, and is
sometimes rendered in a smaller font.
Superscript text can be used for footnotes, like
WW W[1]:

<p>This is an example on
^{superscripted} text.</p>

Example on Text Formatting Tags
<!DOCTYPE html>
<head>
<title>Text Formatting tags </title>
</head>
<body>
<pre>Please come with your

Observation and Record
for your WT Lab </pre>

<p> Please come with your <mark> Observation and Record </mark> for your WT Lab
</p>
<h6> this will display heading is small font </h6>
<small> This will display text in very small </small>
<p>My Interested Job is Software Government. </p>
<p>
My Interested Job is Software <ins>Government </ins>. </p>
<p>This is an example on _{subscripted} text.</p>
<p>This is an example on ^{superscripted} text.</p>
</body>
</html>

Tables

• Tables can be used to display rows and columns
of data, create multi-column text, captions for
images, and sidebars

• The <table> tag is used to create a table;

the <tr> tag defines the beginning of a row while
the <td> tag defines the beginning of a cell

<th> is used to define the table heading for a cell

<thead> is used to define the heading for the entire
table

Adding a Border

• The BORDER=n attribute allows you to
add a border n pixels thick around the
table

• To make a solid border color, use the
BORDERCOLOR=“color” attribute

Creating Simple Table

<TABLE BORDER=10>

<TR>

<TD>One</TD>

<TD>Two</TD>

</TR>

<TR>

<TD>Three</TD>

<TD>Four</TD>

</TR>

</TABLE>

• Here’s how it would
look on the Web:

Adjusting the Width

• When a Web browser displays a table, it often
adds extra space. To eliminate this space use
the WIDTH =n attribute in the <TABLE> and
<TD> tags

• Keep in mind - a cell cannot be smaller than its
contents, and if you make a table wider than
the browser window, users will not be able to
see parts of it.

Centering a Table

• There are two ways to center a table

– Type <TABLE ALIGN=CENTER>

– Enclose the <TABLE> tags in opening and closing
<CENTER> tags

Wrapping Text around a Table

• It is possible to wrap text around a table. This
technique is often used to keep images and captions
together within an article.

• To wrap text around a table, type <TABLE ALIGN =
LEFT> to align the table to the left while the text
flows to the right.

• Create the table using the <TR>, <TD>, and </TABLE>
tags as you normally would

Adding Space around a Table

• To add space around a table, use the
HSPACE=n and VSPACE=n attributes in the
<TABLE> tag

• Example:

<TABLE HSPACE=20 VSPACE=20>

Nesting Tables

• Create the inner table

• Create the outer table and determine which cell of
the outer table will hold the inner table

• Test both tables separately to make sure they work

• Copy the inner table into the cell of the outer table

• Don’t nest too many tables. If you find yourself doing
that, find an easier way to lay out your Web page

Changing a Cell’s Color

• To change a cell’s color, add the
BGCOLOR=“color” attribute to the <TD> tag

• Example:
<TD BGCOLOR=“blue”>

Colspan and Rowspan Attributes

You will use colspan attribute if
you want to merge two or more
columns into a single column. Similar
way you will use rowspan if you want
to merge two or more rows.

Changing the Font

• The expression …

can be used to change the font of the enclosed
text

• To change the size of text use the expression
 …. where n is a number
between 1 and 7

Changing the Font

• To change the color, use …. ; The color can also
be defined using hexadecimal
representation (Example: #ffffff)

• These attributes can be combined to change
the font, size, and color of the text all at once;
For example, <font size=4 face=“Courier”
color=“red”> ….

Aligning Text

• The align attribute can be inserted in the <p>
and <hn> tags to right justify, center, or left
justify the text

• For example, <h1 align=center> The New York
Times </h1> would create a centered heading
of the largest size

Page Formatting

• To define the background color, use the
BGCOLOR attribute in the <BODY> tag

• To define the text color, use the TEXT attribute
in the <BODY> tag

• To define the size of the text, type <BASEFONT
SIZE=n>

Example

<html>

<head>

<title> First Example Program </title>

</head>

<body>

<h1 style="background-color:tomato;">

This is where you would include the text and images on your Web page.

</h1>

</body>

</html>

HTML Lists
HTML offers web authors three ways for

specifying lists of information. All lists must
contain one or more list elements. Lists may
contain −

 − An unordered list. This will list items using
plain bullets.

 − An ordered list. This will use different
schemes of numbers to list your items.

<dl> − A definition list. This arranges your items in
the same way as they are arranged in a
dictionary.

HTML Un-Ordered List

An unordered list is a collection of related
items that have no special order or sequence.
This list is created by using HTML tag.
Each item in the list is marked with a bullet.

Example
<!DOCTYPE html>

<html>

<head>

<title>HTML Unordered List</title>

</head>

<body>

HTML

CSS

Java Script

Angular

</body>

</html>

The type Attribute

You can use type attribute for
tag to specify the type of bullet you
like. By default, it is a disc. Following
are the possible options

<ul type = "square">

<ul type = "disc">

<ul type = "circle">

HTML Ordered Lists

If you are required to put your items in a
numbered list instead of bulleted, then HTML
ordered list will be used. This list is created by
using tag. The numbering starts at one
and is incremented by one for each successive
ordered list element tagged with

Ordered List

<!DOCTYPE html>
<html>
<head>
<title>HTML Unordered List</title>
</head>
<body>

HTML
CSS
Java Script
Angular

</body>
</html>

The type Attribute

You can use type attribute for
tag to specify the type of numbering
you like. By default, it is a number.
Following are the possible options −
<ol type = "1"> - Default-Case Numerals.
<ol type = "I"> - Upper-Case Numerals.
<ol type = "i"> - Lower-Case Numerals.
<ol type = "A"> - Upper-Case Letters.
<ol type = "a"> - Lower-Case Letters.

Html definition/description list

In order to create the definition or
description list in html,we have 3 important
tags. They are as follows:

<dl> this is root element ofdefinition list </dl>

<dt> defines the definition type or name of data

<dd> defines the data of hat definition type

Example on definition list

<dl>
<dt>Programming</dt>

<dd>C</dd>

<dd>CPP</dd>

<dd>JAVA</dd>
<dt>Designing</dt>

<dd>HTML</dd>

<dd>CSS</dd>

</dl>

HTML FORMS

HTML Forms are required when you want
to collect some data from the site visitor. For
example during user registration you would
like to collect information such as name, email
address, credit card, etc. A form will take input
from the site visitor and then will post it to a
back-end application such as database, ASP
Script or PHP script etc.

Example

Html form tag

form -create an html form,
contains form elements . form
elements .

<form>

form elements

</form>

Form elements

Form Elements are text fields, text area
fields, drop-down menus, radio buttons, check

boxes.

Sub-Element

<input> element which contains main attribute
type.

text type

Text Input

<form>

First name:

<input type="text" name="firstname">

Last name:

<input type="text" name="lastname">

</form>

Radio Button Input

• Input type=“radio” defines a radio button

<html>
<body>
<form>
First name:

<input type="radio" name="gender" value="Male"“ > Male

<input type="radio" name="gender" value="female"> Female

<input type="radio" name="gender" value="other"> Other

</form>
</body>
</html>

Other tags

• <input type =“ checkbox” >

• <input type =“ file”>

• <textarea rows=“5” cols=“100”>

• </textarea>

Type = Submit button attribute

<body>

<form action="a.txt">

First name:

<input type="text" name="firstname“>

Password:

<input type="password" name="pass" >

<input type="submit" value="Submit">

</form>

File Upload Box

<body>

<form>

<input type="file" name="fileupload"/>

</form>

</body>

Html form Elements

Some of the main elements in HTML form tag is:
• <input>
• <label>
• <select>
• <textarea>
• <button>
• <fieldset>
• <legend>
• <datalist>
• <output>
• <option>
• <optgroup>

label element

The <label> element defines a label for
several form elements. The for attribute of
the <label> tag should be equal to
the id attribute of the <input> element to
bind them together.

Syntax:

<label for="fname">First name:</label>
<input type="text" id="fname“ >

The select element

The <select> Element

• The <select> element defines a drop-down list:

Example

<label for="cars">Choose a car:</label>
<select id="cars" name="cars">
<option value="volvo">Volvo</option>
<option value="saab">Saab</option>
<option value="fiat">Fiat</option>
<option value="audi">Audi</option>

</select>

<option> element

• The <option> elements defines an option that
can be selected.

• By default, the first item in the drop-down list
is selected.

• To define a pre-selected option, add
the selected attribute to the option:

Syntax:

<option value="fiat" selected>Fiat</option>

Allow multiple selections

• Use the multiple attribute to allow the user to
select more than one value:

Syntax:

The <fieldset> and <legend> Elements

• The <fieldset> element is used to group
related data in a form.

• The <legend> element defines a caption for
the <fieldset> element.

Html Frames

Frame Creation
HTML Frames -Creating Frames

• Divide your browser window into multiple sections where each

section can load a separate HTML document.

• A collection of frames in the browser window - A frameset.

• The window is divided into frames with rows and columns.

<frameset> tag instead of <body> tag

• The rows attribute of <frameset> tag defines horizontal frames

cols attribute defines vertical frames.

• Each frame is indicated by <frame> tag and it defines which

HTML document shall open into the frame.

This <frame> tag is currently not used in HTML5, so we need to
use<iframe> instead of that.

Syntax

<html>

<frameset cols="70%,30%">

<frame src="https://developer.mozilla.org/en/HTML/Element/iframe" />

<frame src="https://developer.mozilla.org/en/HTML/Element/frame" />

</frameset>

</html>

Cascading Style Sheets(CSS)

• CSS stands for Cascading Style Sheets

• Styles define how to display HTML elements

• Styles were added to HTML 4.0 to solve a
problem

• External Style Sheets can save a lot of work

• External Style Sheets are stored in CSS files

• The extension for external style sheets is .css

CSS Solved a Big Problem ?

• HTML was never intended to contain tags for
formatting a document.

• HTML was intended to define the content of a
document, like:

<h1>This is a heading</h1>

<p>This is a paragraph.</p>

When tags like , and color attributes
were added to the HTML 3.2 specification, it
started a nightmare for web developers.

Development of large web sites, where fonts
and color information were added to every single
page, became a long and expensive process.

To solve this problem, the World Wide Web
Consortium (W3C) created CSS.

In HTML 4.0, all formatting could be removed
from the HTML document, and stored in a
separate CSS file.All browsers support CSS today.

CSS Syntax
CSS Syntax

The CSS syntax is made up of three parts: a
selector, a property and a value:

selector { property : value ;Font-family:”times”
;color:red ; size:10; }

The selector is normally the HTML
element/tag you wish to define, the property is
the attribute you wish to change, and each
property can take a value. The property and value
are separated by a colon, and surrounded by
curly braces:

For example

body {font-family: times new roman;
color: blue;width:20pt;}
Or else we can also define as follows:
p
{
font-family : "sans serif“
}
H1{}
H2{}

Multiple Attributes in one selector

If you wish to specify more than one property,
you must separate each property with a
semicolon. The example below shows how to
define a center aligned paragraph, with a red text
color:

Example:
p {
text-align:center;
color:red;
}

Levels of Style Sheets

The CSS can be declared in 3 ways:

1) External style sheet

2) Internal style sheet (inside the <head> tag)

3)Inline style (inside an HTML element)

1)Internal Style Sheet
An internal style sheet should be used when a

single document has a unique style. You define internal
styles in the head section with the <style> tag.

Example:
<head>
<style type="text/css">
body
{background-color: red}
p
{margin-left: 20px}
</style>
</head>

2) Inline Styles

An inline style should be used when a unique style is to
be applied to a single occurrence of an element.

To use inline styles you use the style attribute in the
relevant tag. The style attribute can contain any CSS property.
The example shows how to change the color and the left
margin of a paragraph:

For Example

<p style="color: red; margin-left: 20px">

This is a paragraph</p>

3)External Style Sheet

An external style sheet is ideal, when the
style is applied to many pages. Each page
must link to the style sheet using the <link>
tag. The <link> tag goes inside the head
section.

<head>

<link rel="stylesheet" type="text/css"
href="mystyle.css">

</head>

Multiple Style Sheets
If some properties have been set for the same

selector in different style sheets, the values will
be inherited from the more specific style
sheet. For example, an external style sheet has
these properties for the h3 selector:

h3
{
color: red;
text-align: left;
font-size: 8pt
}

And an internal style sheet has these
properties for the h3 selector:

h3

{

text-align: right;

font-size: 20pt

}

If the page with the internal style sheet
also links to the external style sheet the
properties for h3 will be:

Then the h3 properties will be as follows:

color: red;

text-align: right;

font-size: 20pt

The color is inherited from the external
style sheet and the text-alignment and the
font-size is replaced by the internal style
sheet.

Example on CSS
<html>

<head>

<style type="text/css">

body {background-color: yellow}

h1 {background-color: #00ff00}

h2 {background-color: transparent}

p {background-color: rgb(250,0,255)}

</style>

</head>

<body>

<h1> Java made simple </h1>

<h2> Introduction </h2>

<p> Java was invented by SunMicro … </p>

</body>

</html>

CSS Selectors

CSS selectors are used to "find" (or select)
the HTML elements you want to style

1)CSS element selector

2)CSS id selector

3) CSS class selector

4)CSS Universal selector

5) CSS Generic selector

1) CSS Element Selector

The element selector selects HTML elements
based on the element name.

For example: If we want to align the paragraph to
center and change font color to red.

Syntax:
p
{

text-align: center;
color: red;

}

Simple selector form

The selector is a tag name or a list of tag names,
separated by commas

Consider the following examples, in which the property is
font-size and the property value is a number of points :

h1, h3
{
font-size: 24pt ;
}
h2
{
font-size: 20pt ;
}

2. Css Id Selector

An id selector allow the application of a style to one specific element.
General form:
#specific-id

{
property-value list

}
Example:
#section14
{
font-size: 20;
}

Specifies a font size of 20 points to the

<h2 id = “section14” > Hello <h2>

3. CSS Class Selector
Used to allow different occurrences of the same tag

to use different style specifications .A style class has a
name, which is attached to a tag name

p.normal {property/value list}

p.warning{property/value list}

The class you want on a particular occurrence of a
tag is specified with the class attribute of the tag.

For example,

<p class = “normal”> A paragraph of text that we want to
be presented in ‘normal’ presentation style </p>

<p class = “warning” > A paragraph of text that is a
warning to the reader ,which should be presented in an
especially noticeable style. </p>

4. CSS Universal Selector

The universal selector denoted by an
asterisk(*).

It applies its style to all elements in the
document
For Eg:

*
{

text-align: right;
}
Makes all elements in the document align right side

5. CSS Generic Selector
• A generic class can be defined if you want a style

to apply to more than one kind of tag. A generic
class must be named, and the name must be.

Example,

.large {property : value list }

• Use it as if it were a normal style class

<h1 class = “large"> … </h1>

...

<p class = “large"> … </p> in with a period

CSS Properties

CSS include 60 different properties in 7
categories:

• Fonts

• Lists

• Alignment of text

• Margins

• Colors

• Backgrounds

• Borders

1)Fonts

1.Font-Families

• The font-family property is used to specify a
list of font name.

• The browser will use the first font in the list
that it supports. For example, the following
could be specified.

Example: font- family: Arial, Helvetica, Courier

2.font-size
Sets the size of fonts. There are two categories of

font-size values, absolute and relative.In the case of
absolute category the size value could be given as
length value in points, picas or pixels or keywords
from the list xx-small, x-small, small, medium, large
and x-large.

Eg: font-size: 10pt

The relative size values are smaller and larger,
which adjust the font size relative to the font size of
the parent element.

Eg: font-size: 1.2em

This sets the font size to 1.2 times the font size of
the parent element.1.2em and 120% are same.

3.Font Variant

• The default value of the font-variant property
is normal, which specifies the usual character
font.

• This property can be set to small-caps to
specify small capital letters.

4. font-style

Most commonly used to specify italic.

Eg: font-style: italic

5. font-weight

• Used to specify degrees of boldness.

Eg: font-weight: bold

• Possible values are bolder, lighter, bold,
normal(default)

6. Font Shorthands

For specifying more than one font
properties. The values can be stated in a list as
value of the font property.

Eg: font: bold 14pt Arial Helvetica

The order which browser follows is last
must be font name, second last font size and
then the font style, font variant and font
weight can be in any order but before the font
size and names.

7. The text-decoration property

Specifies some special features of text. Possible
values of text-decoration property are : line-
through, overline, underline, none

Suppose if we apply these for a paragraph tag

8. List properties
• Property Name: list-style-type can applied to both

ordered and unordered list.
Unordered lists
• Bullet can be a disc (default), a square, or a circle. Set it

on either the or tag. On
, it applies to list items.
<style type = “text/CSS”>
ul

{
list-style-type:square;
}
</style>

ORDERED LIST

On ordered lists - list-style-type property
can be used to change the sequence values

Property value Sequence type First four

Decimal Arabic numerals 1, 2, 3, 4

upper-alpha UC letters A, B, C, D

lower-alpha lc letters a, b, c, d

upper-roman Uc Roman I, II, III, IV

lower-roman Lc Roman i, ii, iii, iv

9.CSS Color properties

Color is a problem for the Web for two reasons:

1. Monitors vary widely

2. Browsers vary widely

There are three color collections

1)color: color name;

2)color: rgb(100,255,125);

3)color: #01a2cf

For hexa decimal we need to enter the color range
in 0 to f letters only.

10. Alignment of text

The text-align property has the possible
values, left (the default), center, right, or
justify.

text-align: center;

Web Technologies

Unit 2: Contents

UNIT-II: Working with XML: Introduction,
The syntax of XML, XML Document Structure,
Document type Definition (DTD), Namespaces,
XML schemas, XSLT, XML Parsers - DOM and SAX

Introduction to XML

1) What is XML?

A. XML stands for Extensible Markup Language

B. XML is a markup language much like HTML

C. XML was designed to carry data, not to display data

D. XML tags are not predefined. You must define your
own tags

E. XML is designed to be self-descriptive

F. XML is a W3C Recommendation(World Wide Web
Consortium)

XML Syntax
XML syntax refers to the rules that

determine how an XML application can be
written. The XML syntax is very straight
forward, and this makes XML very easy to
learn. Below are the main points to remember
when creating XML documents.

XML documents must contain
one root element that is the parent of all
other elements

XML Document Structure

<? xml version="1.0" encoding="UTF-
8"?>

<root>
<child>
<subchild>..... </subchild>

</child>

</root>

XML Prolog

<?xml version="1.0" encoding="UTF-8"?>
is also known as XML prolog

Features of XML

Tag based language. tags are used to describe the
content of the document

• Tags are defined by user and not by language

• Case sensitive and strict.

• Endorsed and maintained by w3c and used by all major
companies like microsoft, oracle, Sun and IBM.

• Platform independent and language independent –any
language on any platform can read process the data in
xml document.

• With xml,white space is preserved

Ever xml document must be a well formed
xml document. A well-formed XML is an
document that compiles with following rules:

1. It has a single root element

2. Ever tag is opened and closed. Tags must
be properly nested.

3. Values of an attribute is enclosed is
quotes-single or double.

What is Well-formed XML

<? xml version=”1.0” encoding=“UTF-8” ?>

<course>

<name>java</name>

<fee currency=”INR”>7500</fee>

<prereqsite> c Language done by thomasa
asfsafsafsafassfasfsafsafsafsafsafsa</prer
eqsite>

</course>

Course.xml

<?xml version=”1.0” encoding=“UTF-8” ?>
<team name=”Men InBule”

<player>
<name>M.S Dhoni</name>
<age> 30</age>

</player>
<player>

<name>ViratKohli</name>
<age> 25</age>

</player>
<player>

<name>Rohit</name>
<age> 28</age>

</player>
</team>

Team.xml

Why XML is Used?

We developers uses the XML files for following purposes:

• Storing the data for some application such as menu data or
data for some comobox

• For developing the database driven websites.

• In image gallery application is can work as the data file (xml)
/storing the names and location of the images.

• For shopping application it can be used to store the product
details

• In travel applications XML data can be used to talk to booking
gateway.

• On the web web services such as Weather services, Currency
rates service etc. are using the XML language

A DOM is a standard
tree structure, where each
node contains one of the
components from an XML
structure. The two most
common types of nodes are
element nodes and text
nodes. Using DOM
functions lets you create
nodes, remove nodes,
change their contents, and
traverse the node hierarchy.

Document Object Model

With a DTD, each of your XML files can carry a
description of its own format. With a DTD, independent
groups of people can agree to use a standard DTD for
interchanging data. Your application can use a standard DTD
to verify that the data you receive from the outside world is
valid. You can also use a DTD to verify your own data. Seen
from a DTD point of view, all XML documents (and HTML
documents) are made up by the following building blocks:

1. Elements

2. Attributes

3. Entities

4. PCDATA (Parsed Character Data)

5. CDATA (Character Data)

Why Use a DTD (Document Type Definition)

PCDATA

• PCDATA means parsed character data.

• Think of character data as the text found between
the start tag and the end tag of an XML element.

• PCDATA is text that WILL be parsed by a parser. The
text will be examined by the parser for entities and
markup.

• Tags inside the text will be treated as markup and
entities will be expanded.

• However, parsed character data should not contain
any &, <, or > characters; these need to be
represented by the & < and > entities,
respectively.

CDATA
• CDATA means character data.

• CDATA is text that will NOT be parsed by a parser.
Tags inside the text will NOT be treated as markup
and entities will not be expanded.

• the qualifiers you can add to an element definition
are listed in below:

You can specify what type of data an
element can contain parsed character data
(PCDATA) or CDATA section ,which contain
character data that is not parsed. The# that
precedes PCDATA indicates that what follows
is a special word rather than an element
name.

Lab Task Exercise 4

Exercise 4:

Write an XML file which will display the Book

information which includes the following: (i) Title of the book

(ii) Author Name (iii) ISBN number (iv) Publisher name (v)

Edition (vi) Price

(a) Write a Document Type Definition (DTD) to validate

the above XML file.

(b) Write a XML Schema Definition (XSD)

Sample DTD for Book

Book.xml

Contd..

Contd..

book.xsl

Contd…

Ways to declare DTD
• A Document Type Definition (DTD) defines the legal building

blocks of an XML document. It defines the document structure
with a list of legal elements and attributes.

• A DTD can be declared inline inside an XML document, or as an
external reference.

Internal DTD Declaration

• If the DTD is declared inside the XML file, it should be wrapped in
a DOCTYPE definition with the following syntax:

<!DOCTYPE root-element [element-declarations]>

External DTD Declaration

• If the DTD is declared in an external file, it should be wrapped in
a DOCTYPE definition with the following syntax:

<!DOCTYPE root-element SYSTEM "filename">

XML Namespaces

• XML Namespaces provide a method to avoid el

Name Conflicts

• In XML, element names are defined by the
developer. This often results in a conflict when trying
to mix XML documents from different XML
applications.

<table>
<tr>

<td>Apples</td>
<td>Bananas</td>

</tr>

</table>

• In the second XML file, the sample table element

takes different values:

<table>
<name>African Coffee Table</name>
<width>80</width>
<length>120</length>

</table>

If these XML fragments were added together,
there would be a name conflict. Both contain a
<table> element, but the elements have different
content and meaning. A user or an XML application
will not know how to handle these differences.

Solving the Name Conflict Using a Prefix

Name conflicts in XML can easily be avoided using a name prefix.This
XML carries information about an HTML table, and a piece of furniture:

<h:table>
<h:tr>
<h:td>Apples</h:td>
<h:td>Bananas</h:td>

</h:tr>

</h:table>

<f:table>
<f:name>African Coffee Table</f:name>
<f:width>80</f:width>
<f:length>120</f:length>

</f:table>

XML Namespaces - The xmlns Attribute

• When using prefixes in XML, a namespace for the prefix must
be defined.

• The namespace can be defined by an xmlns attribute in the
start tag of an element.

• The namespace declaration has the following syntax.
xmlns:prefix="URI".

Here Uniform Resource Identifier (URI) is a string of
characters which identifies an Internet Resource.

Example on XML Namespaces
<root xmlns:h="http://www.w3.org/TR/html4/"

xmlns:f="https://www.w3schools.com/furniture">

<h:table>
<h:tr>
<h:td>Apples</h:td>
<h:td>Bananas</h:td>

</h:tr>

</h:table>

<f:table>
<f:name>African Coffee Table</f:name>
<f:width>80</f:width>
<f:length>120</f:length>

</f:table>

</root>

XML schemas
• An XML Schema describes the structure of an XML

document, just like a DTD.

• An XML document with correct syntax is called "Well
Formed".

• An XML document validated against an XML Schema is
both "Well Formed" and "Valid".

• XML Schemas are extensible to future additions

• XML Schemas are richer and more powerful than DTDs

• XML Schemas are written in XML

• XML Schemas Support data types

• XML Schemas supports namespace

Most common datatypes
xs:string,

xs:decimal,

xs:integer,

xs:boolean,

xs:date,

xs:time

Example:

<xs:element name=”lastname” type=”xs:string”/>

<xs:element name=”age” type=”xs:integer”/>

<xs:element name=”dateborn” type=”xs:date”/>

XSLT(Extensible Style Sheet Language
Transformation)

Before XSLT, first we should learn about
XSL. XSL stands for eXtensible Style sheet
Language. It is a styling language for XML just
like CSS is a styling language for HTML.

XSLT stands for XSL Transformation. It is
used to transform XML documents into other
formats (like transforming XML into HTML).

Architecture of XSLT

Syntax of XSLT
<?xml version = "1.0" encoding=”UTF-8” ?>

<xsl:stylesheet version="1.0“>

<xsl:template match="/">

<xsl:for-each select=“xml root element/parent element">

<xsl:value-of select=“xml child element name"/>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

If we want to link xml style sheet
for an XML page

<?xml-
stylesheet type = "text/xsl" href = "filename.xsl"?>

XML Parsers - DOM and SAX

There are two types of XML parsers namely Simple API
for XML and Document Object Model.

1. SAX (Simple API for XML)

2. DOM(Document Object Model)

The objective of DOM (Document Object Model) parser
and SAX (Simple API for XML) parser are same but
implementation is different. Both the parser work in different
way internally, but intent of both are same. Internal
implementation of DOM Vs SAX is different. It means, with
same intent philosophy of the implementation are different.
In order to understand the difference between DOM and
SAX, you have to understand each one of the parsers.

https://www.geeksforgeeks.org/java-sax-library/

Key Differences between DOM & SAX parsers

• DOM parser load full XML file in-memory and creates a tree
representation of XML document, while SAX is an event based
XML parser and doesn’t load whole XML document into
memory.

• If you know you have sufficient amount of memory in your
server you can choose DOM as this is faster because load
entire XML in-memory and works as tree structure which is
faster to access.

• As a thumb rule, for small and medium sized XML documents,
DOM is much faster than SAX because of in memory
management.

• As a thumb rule, for larger XML and for frequent parsing, SAX
XML parser is better because it consume less memory.

Differences

Web Technologies

Unit 3: Contents

UNIT-III: WORKING WITH DATABASE:

Getting started with JDBC , Defining ODBC,
Introduction to JDBC, Components of JDBC, JDBC
Architecture, Types of Drivers, Working with JDBC APIs,
Creating a Simple Application, Working with Prepared
Statement.

Getting Started with JDBC

1) What is JDBC?

Java Database Connectivity in short called as
JDBC. It is a java API which enables the java
programs to execute SQL statements. It is an
application programming interface that defines how
a java programmer can access the database in
tabular format from Java code using a set
of standard interfaces and classes written in the Java
programming language.

The JDBC DriverManager class defines
objects which can connect Java applications to
a JDBC driver. DriverManager has traditionally
been the backbone of the JDBC architecture. It
is quite small and simple.

JDBC Components

JDBC provides the following components
as part of the JDK.

JDBC Driver Manager

The JDBC driver manager is the backbone of the

JDBC Architecture. It actually is quite small and

simple; its primary function is to connect Java

applications to the correct JDBC Driver and then get

out of the way.

JDBC-ODBC Bridge

The JDBC-ODBC bridge allows ODBC drivers to be

used as JDBC drivers. It provides a way to access less

popular DBMS.If JDBC driver is not implemented for

it.

JDBC Driver Component Architecture

Defining ODBC

ODBC is known as Open Database Connectivity,
this is present in built in every operating system. The
following are the steps to check where the ODBC is
present in our operating system.

Go to Start menu..Choose Control Panel

Next choose Administrative tools from
that control panel.

Contd…

After that choose Data Sources(ODBC option)

Contd…

Next we can add the Data Source Name
for the type of database which we want to
connect

Contd…

If we use 32-bit Operating system

If we use 32 bit operating system in our system, then we
can see the list of options in the ODBC:

Here we choose Test as data source name.

We can choose DSN Name for that
database

If we use 64 Bit OS,then we cannot able to see
multiple databases, only SQL server can be seen

JDBC has four major components that are
used for the interaction with the database.

1. JDBC API

2. JDBC Test Suite

3. JDBC Driver Manger

4. JDBC ODBC Bridge Driver

1) JDBC API: JDBC API provides various
interfaces and methods to establish easy
connection with different databases.

javax.sql.*;

java.sql.*;

https://www.javatpoint.com/java-jdbc

2) JDBC Test suite: JDBC Test suite facilitates
the programmer to test the various operations
such as deletion, updation, insertion that are
being executed by the JDBC Drivers.

3) JDBC Driver manager: JDBC Driver manager
loads the database-specific driver into an
application in order to establish the
connection with the database. The JDBC
Driver manager is also used to make the
database-specific call to the database in order
to do the processing of a user request.

4) JDBC-ODBC Bridge Drivers: JDBC-ODBC
Bridge Drivers are used to connect the
database drivers to the database. The bridge
does the translation of the JDBC method calls
into the ODBC method call. It makes the usage
of the sun.jdbc.odbc package that
encompasses the native library in order to
access the ODBC (Open Database
Connectivity) characteristics.

Working with JDBC API

Components of JDBC API

In JDBC API,we can have several pre-
defined classes ,interfaces and corresponding
methods to execute the task. The following are
the some of the classes, interfaces and
methods which are present in the JDBC API.

In java, we can use JDBC with the help of
following package

import java.sql.*;

Types of Drivers

JDBC driver implementations vary
because of the wide variety of operating
systems and hardware platforms in which
Java operates. Sun has divided the
implementation types into four categories,
Types 1, 2, 3, and 4 :

1) Type 1 − JDBC-ODBC Bridge Driver

2) Type 2 − JDBC-Native API

3) Type 3 − JDBC-Net pure Java

4) Type 4 − 100% Pure Java

Type 1-JDBC-ODBC Bridge Driver

1) In a Type 1 driver, a JDBC bridge is used to access

ODBC drivers installed on each client machine.

2) Using ODBC, requires configuring on your system a Data

Source Name (DSN) that represents the target database.

3) When Java first came out, this was a useful driver

because most databases only supported ODBC access but

now this type of driver is recommended only for

experimental use or when no other alternative is available.

Type 1 Architecture

Pros and Cons for Type 1 Driver

Type-2 : Native-API driver

• The Native API driver is also known as Type 2 driver.

• Type 2 driver uses the native code part instead of ODBC parts.

It uses the client-side libraries of the database.

• It is vender specific driver, so must be installed on each client

system. This driver converts the JDBC method call into native

call of database.

• The Oracle Call Interface (OCI) driver is an example of a

Native API Driver.

Type -2 Architecture

Pros and Cons of Type -2

Type-3: Network-Protocol Driver

The Network Protocol driver uses middleware (application server) that

converts JDBC calls directly or indirectly into the vendor-specific database

protocol. It is fully written in java.

Pros and Cons

Type 4 Driver: thin driver

The thin driver converts JDBC calls directly into
the vendor-specific database protocol. That is why it
is known as thin driver. It is fully written in Java
language.

Pros and Cons

MYSQL connectivity using Type 4 Driver for Data Retrieval

Before executing the program,just try to create
database with following tables

create database vasavi;

use vasavi;
create table emp(id int(10),name varchar(40),age int(3));

insert into emp values(1,'praveen',31);

insert into emp values(2,'Kumar',30);

insert into emp values(3,'Sowmya',29);

MYSQL connectivity using Type 4 Driver for Data Update

MYSQL connectivity using Type 4 Driver for Data Deletion

Database Tables for Delete Operation Program

• CREATE DATABASE "vasavi";

• USE "vasavi";

• CREATE TABLE /*!32312 IF NOT EXISTS*/ "student" ("stdno" int(50) ,

"stdname" varchar(50) , "stdmarks" int(10));

• Try to insert some student details in the above
table.s

PreparedStatement

A PreparedStatement is a pre-compiled SQL statement. It
is a subinterface of Statement. Prepared Statement objects
have some useful additional features than Statement objects.
Instead of hard coding queries, PreparedStatement object
provides a feature to execute a parameterized query.

When PreparedStatement is created, the SQL query is
passed as a parameter. This Prepared Statement contains a
pre-compiled SQL query, so when the PreparedStatement is
executed, DBMS can just run the query instead of first
compiling it.

Method : prepareStatement()

Prepared Statement for Retrieving Query in Dynamic Way

Prepared Statement for insert the records in Dynamic Way

Web Technologies

Unit 4: Contents

UNIT IV: Introduction to Servlets & JSP:

Introduction to servlets, Life cycle of Servlet,

Limitations of servlets, Java Server Pages: JSP

Overview, Components of a JSP Page: Directives,

comments, Expressions, Scriplets , Declarations,

implicit objects, Database Access, session tracking.

What is Web Application ?
Web Application is an application that runs in Web. A Java

web application is a collection of dynamic resources (such as

Servlet, Java Server Pages, Java classes and jars) and static

resources (HTML pages and pictures). A Java web application can

be deployed as a ".war" file. The ".war" file is a zip file which

contains the complete content of the corresponding web

application. A Servlet is a Java class which extends "HttpServlet"

and answers a HTTP request within a web container.

Package: javax.Servlet.*;

What is Web Client/Browser ?

• Web client makes a request to web server using HTTP
protocol.

• Web client receives HTML sent from server and displays
it to end user.

• Internet Explorer, Mozilla Firefox and Netscape
Navigator are widely used web browsers.

• Browser is also responsible for running client-side
scripting written in JavaScript.

HTTP PROTOCOL

• HTTP is an application protocol implemented
on TCP/IP.

• It is request and response protocol.

• Client sends a request to receive information
from server or invoke a process on the server.

CGI Means: Common Gateway Interface

Java Servlets
1. Servlet are server side components that provide a powerful

mechanism for developing server side programs.

2. Servlet provide component-based, platform-independent

methods for building Web-based applications, without the

performance limitations of CGI programs.

3. Using Servlet web developers can create fast and efficient

server side application which can run on any Servlet

enabled web server.

4. Servlet run entirely inside the Java Virtual Machine.

5. Servlet can access the entire family of Java APIs, including

the JDBC API to access enterprise databases.

6. Servlet can also access a library of HTTP-specific calls.

7. Servlets are platform independent and can be accessed by

any one easily.

7. Servlets are one form of CGI program,which is not designed

for a specific protocol. They are universal and can be

accessed by any one.

8. Servlet uses the classes in the java packages javax.servlet

and javax.servlet.http.

Life Cycle of Servlet

The following are the
paths followed by a Servlet.

• The Servlet is initialized by
calling the init () method.

• The Servlet calls service()
method to process a client's
request.

• The Servlet is terminated by
calling the destroy() method.

• Finally, Servlet is garbage
collected by the garbage
collector of the JVM.

Flow

1) Start: Execution of servlet begins.

2) Loading & instantiation void init(): It is called when
servlet is first loaded. This method lets you initialize
servlet.

3) Initialized void service(): The purpose of this method
is to serve a request. You can call it as many times as
you like.

4) Handling request and destroying servlet: Java
application must be first determined what code is
needed to execute the request URL to provide a
response. To destroy servlet Void destroy method is
used at the end of servlet life cycle.

5) End of Request Thread: When service()

finishes its task, either the thread ends or

returns to the thread pool that is managed by

servlet container.

6) End: Servlet lifecycle finishes.

7) Stop: Servlet stop executing.

Limitations of servlets
Here are the disadvantages

for using Servlet:

1. One servlet is loaded into JVM. It
does matter numbers of requests.

2. When there is a request, there is
a thread, not a process.

3. Servlet is persistent until it
destroys.

4. Designing in a servlet is difficult
and slows down the application.

5. You need a JRE(Java Runtime
Environment) on the server to run
servlets.

6. For non-java developers, servlet is
not suitable as they required to
have a broad knowledge of Java
servlet.

7. HTML code is mixed up with Java
code therefore, changes done in
one code can affect another
code.

8. Writing HTML code in servlet
programming is very difficult. It
also makes servlet looks bulky.

9. In servlet programming, if you
want to use implicit objects, you
need to write some additional
code in order to access them.

10. Developers must take care of
exception handling because
servlet programming is not
thread-safe by default.

JSP(Java Server Pages)

• JSP Stands for Java Server Pages.

• It is the technology that allows you to easily
create web content that has both static and
dynamic components.

• Provides expression language for accessing
server-side objects.

• JSP specifications extend the java Servlet API.

Life Cycle of JSP

Life Cycle of JSP

• A JSP Page services requests as a servlet.Thus,the
life cycle of JSP Pages is determined by Java Servlet
technology.

• When a request is mapped to a JSP page ,the web
container first checks whether the JSP page’s servlet
is older than the JSP page. If the servlet is older, the
web container translates the JSP page into a servlet
class and compiles the class

Internal Flow of JSP Page

JSP Page Interface

• Ever Jsp page should implement Servlet class

• They may Extend Servlet interface

• For JSP page there will be two main threads :

void jspInit()-same as init()

void jspDestroy()-same as destroy()

JSP COMPONENTS:
Directives Are used to control how the web

container translates and executes the

jsp page.

Scripting Element Are inserted into the JSP Pages servlet

class.

Expression Language Expression Are passed as parameters

to calls to the JSP expression

evaluator.

Jsp[set|get]Property Elements are converted into method

calls to java beans components.

Custom tags Are converted into calls to the tag

handler that implements the custom

tag.

JSP Scriplets

In JSP if we want to use any component
to be added within the program, we need to
use <% and %>. These are known as
Scriplets and for any piece of code or
component we need to use Scriplets
functionality.

For displaying any statement as output, we can use
following statements in JSP:

• out.println(“Statement to be displayed”);

• out.write(“Statement to be printed”);

• out.print(Any expression);

1. DIRECTIVE

Specifies what JSP container must do.It starts
with @character within the tag.

There are 3 directive-

1. page directive,

2. include directive and

3. taglib directive.

Syntax of JSP Directive:

<%@ directive attribute="value" %>

2. DECLARATIONS

• It is a block of java code
that is used to define
class wide variables and
methods in the
generated class file.

• It is enclosed between
<%! and %>

<%!

int a;

float b;

public void add()

{

Piece of logic part

}

%>

3. SCRIPLETS

• It is the block of a java
code that is executed
when jsp is executed .

• It is enclosed in <% and
%>

<%

out.println(“HELLO JSP
WORLD”);

%>

4. EXPRESSIONS

• It is a shorthand notation for a scriplet that outputs a
value in the response stream back to the client.

• It is enclosed in

<%= and %>.
<%=new Date()%>

<input type=text value= ’<%=request.getParameter(“age”)%>’

name=’age’ >

5. Comments

• It is given using <%- - and - -%>

Syntax:

<%-- Example of SQRT function using two ways --%>

Lab Exercise 5:Create a simple JSP to print the current
Date and Time.

Lab Exercise 6:Create a simple JSP a) Display current
IP-Address of the System b) Find out the Square root

for a Number

6 b) Find out the Square root for a Number

Lab Exercise 7:Develop JSP program calculates factorial values for an integer
number, while the input is taken from an HTML form.

Index.jsp

Develop JSP program calculates factorial values for an
integer number, while the input is taken from an

HTML form.

Exercise 8:Develop JSP program shows a Sample Order Form

Catalog.jsp

JSP IMPLICIT OBJECTS

There are 9 jsp
implicit objects. These
objects are created by
the web container that
is available to all the jsp
pages. The available
implicit objects are out,
request, config, session,
application etc. A list of
the 9 implicit objects is
given below:

1) JSP out implicit object

For writing any data to the buffer, JSP provides
an implicit object named out. It is the object of
JspWriter. In case of servlet you need to write:

PrintWriter out=response.getWriter ();

IN JSP we can declare out as:

• out.println();

• out.write();

• out.print();

2. request Implicit Object

The JSP request is an implicit object of type
HttpServletRequest i.e. created for each jsp request
by the web container. It can be used to get request
information such as parameter, header information,
remote address, server name, server port, content
type, character encoding etc.

For Example

String name=request.getParameter("uname");

3) JSP response implicit object

It can be used to add or manipulate response
such as redirect response to another resource, send
error etc.

For example

<%

response.sendRedirect("http://www.google.com");

%>

4) JSP config implicit object

In JSP, config is an implicit object of
type ServletConfig. This object can be used to get
initialization parameter for a particular JSP page. The
config object is created by the web container for
each jsp page.

Generally, it is used to get initialization
parameter from the web.xml file.

5) JSP Application Implicit Object

ServletConfig and ServletContext, both are objects created at the
time of servlet initialization and used to provide some initial parameters
or configuration information to the servlet. But, the difference lies in the
fact that information shared by ServletConfig is for a specific servlet,
while information shared by ServletContext is available for all servlets in
the web application.

For example:

If we create one web site with website name, the same website
name should be re-used for all the web pages hence we try to gather
that information using ServletContext object.

getServletContext.getInitParameter(“Name”)

6) Session Tracking Object

In JSP, session is an implicit object of type
HttpSession.The Java developer can use this object to
set,get or remove attribute or to get session
information.

For Example

session.setAttribute("user",name);

7)pageContext implicit object

pageContext extends JspContext to contribute helpful
context details while JSP technology is applied in a Servlet
environment. A PageContext is an instance that gives access to
all the namespaces related to a JSP page, gives access to some
page attributes and a layer over the application details. Implicit
objects are connected to the pageContext consequently.

8)page implicit Object

In JSP, page is an implicit object of type
Object class.This object is assigned to the
reference of auto generated servlet class. It is
written as:

Object page=this;

9)Jsp exception implicit object

The exception is
normally an object that is
thrown at runtime.
Exception Handling is the
process to handle the
runtime errors. There may
occur exception any time in
your web application. So
handling exceptions is a
safer side for the web
developer. In JSP, there are
two ways to perform
exception handling:

By errorPage and isErrorPage attributes of

page directive

By <error-page> element in web.xml file

DATABASE ACCESS & SESSION TRACKING

• Session simply means a
particular interval of time.

• Session Tracking is a way to
maintain state (data) of an user.
It is also known as session
management in servlet.

• In general we can use any type
of database for connecting JSP
page to store and retrieve the
data from centralized data
storage location. Here we are
going to use MY-SQL as back
end database to store and
retrieve the information.

• For connecting the JSP
pages with My-SQL we need
to use JDBC connectivity
with Type 4 Driver. Once
JDBC type 4 driver is
constructed now the JSP
pages can be easily
connected with the
database

Session Tracking
• Session simply means a particular

interval of time.

• Session Tracking is a way to
maintain state (data) of an user. It
is also known as session
management in servlet.

• Http protocol is a stateless so we
need to maintain state using
session tracking techniques. Each
time user requests to the server,
server treats the request as the
new request. So we need to
maintain the state of an user to
recognize to particular user.

Database Connection Using My-SQL In JSP

Web Technologies

Unit 5: Contents

UNIT V: Fundamentals of NODE JS and Angular :

Understanding Node.js, Installing Node.js,

Working with Node Packages, Creating a Node.js

Application, Understanding Angular, Modules,

Directives, Data Binding, Dependency Injection,

Services, Creating a Basic Angular Application.

What is Node Js?

1) What is NODE JS?

Node.js is an open-source, cross-
platform runtime environment, library, and
development framework used to create
server-side and networking JavaScript
applications. It also provides developers
with a vast library of JavaScript modules
that simplify coding

Node.js offers developers the following
benefits

1. It’s open-source

2. It’s scalable. Developers can use it either for horizontal scaling or

vertical scaling

3. It supports out of the box unit testing. Developers can use any JavaScript

unit testing framework to test their Node.js code

4. It features built-in application programming interfaces (API) that helps

developers create different types of servers

5. It is a high-performance tool, thanks to incorporating non-blocking I/O

operations. It employs the JavaScript V8 engine to execute code,

increasing its speed

6. It supports scripting languages like Ruby, CoffeeScript, and TypeScript

7. It enables rapid development suitable for applications that require

frequent changes

Node JS Installation

Go to the URL :

https://nodejs.org/en/download/

https://nodejs.org/en/download/

Choose the windows platform based on ur Laptop or PC

Operating System and then click on that installer

In my Pc I am using windows as operating system and my

working bit is 64-bit.

Download windows installer 64 bit file

Double click on that installer and try to install the Node.Js

Installer Platform

Installation will be completed

Working with Node Js Package
1. One of the most powerful features of the Node.js framework is the

ability to easily extend it with additional Node Packaged Modules

(NPMs) using the Node Package Manager (NPM). NPM is mainly

used for referring Node Packaged Modules as Modules.

2. A Node Packaged Module is a packaged library that can easily be

shared, reused, and installed in different projects. Many different

modules are available for a variety of purposes.

3. Node.js modules are created by various third-party organizations to

provide the needed features that Node.js lacks out of the box. This

community of contributors is active in adding and updating modules.

The Node modules have a managed location called the

Node Package Registry where packages are registered. This

allows you to publish your own packages in a location where

others can use them as well as download packages that others

have created. The Node Package Registry is located at

https://npmjs.com

From this location you can view the newest and most

popular modules as well as search for specific packages

https://npmjs.com

https://npmjs.com/
https://npmjs.com/

Home Page for NPM Registry

Here u can create whatever u want to create new packages or

else find the details about already existing packages

USING THE NODE PACKAGE MANAGER

The Node Package Manager you have already
seen is a command-line utility. It allows you to find,
install, remove, publish, and do everything else related
to Node Package Modules. The Node Package
Manager provides the link between the Node Package
Registry and your development environment.

The simplest way to really explain the Node
Package Manager is to list some of the command-line
options and what they do.

Node Package Manager Register Methods

Node.Js First Application

• Before creating an actual "First Node Js Welcome !" application

using Node.js.

• Let us see the components of a Node.js application. A Node.js

application consists of the following three important components :

1) Import required modules

2) Create Server

3) Read request and return response

1)Import required modules

We use the require directive to load Node.js modules.. In

general for importing any modules in Node.js we use require

keyword.

For Example

var http = require("http");

Here var is keyword which is used to create a variable

and we use require to load the http package for initializing the

http protocol

2)Create Server
Create server − A server which will listen to client's requests

similar to Apache HTTP Server.This server is one which should be

invoked by the user, but in apache tomcat we can get server

automatically invoked.

We use the created http instance and call

http.createServer() method to create a server instance and then

we bind it at port 8081 using the listen method associated with the

server instance.

3) Testing Request & Response

Let's put step 1 and 2 together in a file called hello.js and

start our HTTP server as shown below –

I.e Step 1 and Step 2 are stored in one file and save the file with

extension .js

Here in our example we want to display hello world

program so we try to save the filename as hello.js

Exercise 10: Design a simple Node JS application

How to run the hello.js program

Now execute the hello.js to start the server as follows −

Output

HTTP Response Codes

HTTP Response Codes are classified into 5 classes

1. Informational responses (100–199)

2. Successful responses (200–299)

3. Redirection messages (300–399)

4. Client error responses (400–499)

5. Server error responses (500–599)

In our program we use 200 as response code. That

means it is ok

Understanding Angular JS

AngularJS is an open-source structural framework developed and
maintained by Google. It lets developers use HTML as a template language, and
is used to create dynamic, single-page client-side web applications.

AngularJS gives developers the following advantages:

1. It’s open-source

2. It’s easy to use, thanks to decoupling Document Object Models (DOM)
manipulation from application logic

3. It provides built-in features like filters, directives, and automatic data
binding

4. It provides a smooth, dynamic Model View Control Architecture, making
it easier for developers to create client-side web applications

5. It uses the Plain Old JavaScript Objects (POJO) data model, producing
spontaneous and clean code, ideal for interactive, user-friendly web-based
apps

6. It supports object-oriented, functional, and event-driven programming
paradigms

7. It makes unit testing easy, thanks to its built-in test runner (Karma)

Disadvantages of AngularJS

Though AngularJS comes with a lot of merits, here are

some points of concern:

1) Not secure : Being JavaScript only framework, application

written in AngularJS are not safe. Server side

authentication and authorization is must to keep an

application secure. But this is not possible in angular.

2) Not degradable: If the user of your application disables

JavaScript, then nothing would be visible, except the

basic page.

Angular JS Concepts

Angular Js Directives

The AngularJS framework can be divided
into three major parts:

1) ng-app : This directive defines and links an
AngularJS application to HTML.

2) ng-model : This directive binds the values
of AngularJS application data to HTML
input controls.

3) ng-bind : This directive binds the AngularJS
application data to HTML tags

Ng-App Directive

The ng-app directive starts an AngularJS
Application. It defines the root element. It
automatically initializes or bootstraps the application
when the web page containing AngularJS Application
is loaded. It is also used to load various AngularJS
modules in AngularJS Application.

NG MODEL DIRECTIVE
The ng-model directive defines the

model/variable to be used in AngularJS
Application. In the following example, we define a
model named name

ng-bind

This directive binds the AngularJS

Application data to HTML tags.

OTHER DIRECTIVES: ng-init directive

The ng-init directive initializes an
AngularJS Application data. It is used to
assign values to the variables. In the
following example, we initialize an array of
countries. We use JSON syntax to define
the array of countries.

The ng-repeat directive repeats
HTML elements for each item in a
collection. This is used just like loop
statements.

NG-REPEAT DIRECTIVE

Angular MODULES: NODE Package manager (npm)

NPM supports modularity.
 Each modules can be bundled under a single package.
 Each module contains methods and properties.
 Modules can be a single file or a collection of multiples

files/folders.
 The reason programmers are heavily reliant on modules is

because of their re-usability as well as the ability to break
down a complex piece of code into manageable chunks.

 Modules are of three types:
1. Core Modules
2. local Modules
3. Third-party Modules

NPM is used to load necessary Angular JS Modules into
the application and then execute the programs very easily.

How to install Angular 7

• Install Visual Studio Code IDE or JetBrains
WebStorm

• You can download VS Code
from https://code.visualstudio.com

• Run the Angular CLI command to install Angular
CLI

• npm install -g @angular/cli

Or

• Your Angular 7 Environment setup is complete
now.

https://code.visualstudio.com/

Run the following command to create your first
Angular app.

ng new my-first-app

• Navigate to your first app.

cd my-first-app

• Start your server to run app.

ng serve

About Data Binding

Data binding is the synchronization of
data between business logic and view of
the application. It serves as a bridge
between two components of angular that is
model part and view part. Data Binding is
automatic and provides a way to wire the
two important part of an application that is
the UI and application data.

How data binding is possible in
angular

The directive in AngularJS used to bind the value
of the input field (such as text field, text area) to the
HTML element is ng-model. An ng-model directive is
used to perform data binding in angular. We don’t have
to write extra code to link the model part with view
part by adding few snippets of code we can bind the
data with the HTML control.

In the Angular JS we will be using ng-model and
ng-bind for performing the binding operations.

https://data-flair.training/blogs/angularjs-directives/

Data Binding
There are two types of data binding present in

Angular Js. They are as follows:

1) One-way Data Binding

2) Two –Way Data Binding

Now lets see the difference between one-way and
two-way data binding .

1. One Way data binding

Two way data binding

You can also use double braces {{ }} to display content

from the model:

Angular dependency injection

What is meant by Angular
Dependecy ?

Dependency injection (DI) is a design
pattern where objects are passed to another
object to complete the tasks. In angular a service
or component may require other dependent
services to complete a task. Angular uses
dependency injection design pattern to fulfil these
dependencies. The advantage of dependency
injection design pattern is to divide the task
among deferent services.

In Angular we specify providers for services using
@Injectable(),
@ngModule() &
@Component() decorators.

Now let us discuss about each decorators in detail
@Injectable(): This is used to inject some sort of service in
the angular.

@ngModule(): This is used to construct some new module

@Component(): This is used to specify some components
used to execute the application.

Providers in angular dependency
injection

useClass: A class provider that creates and returns
new instance of specified class.

useExisting: An alias provider that maps one token
to another.

useFactory: Configures a factory provider that
returns object for dependency injection.

useValue: A value provider that returns a fixed
value for dependency injection.

Some Components in angular

What is meant by service ?

Services
AngularJS supports the concept of Separation of Concerns using

services architecture. Services are JavaScript functions, which are responsible to

perform only specific tasks. This makes them individual entities which are

maintainable and testable. The controllers and filters can call them on requirement

basis. Services are normally injected using the dependency injection mechanism

of AngularJS. There are some components to inject services.

1. Value

2. Factory

3. Service

4. Provider

5. Constant

1) Value

Value is an object. It can be a number,
string or javascript object. It is used to pass the
value to controller, service or factories in config
or run phase.

Components
Templat
e

Class

MetaDa
ta

Sample Program
<!DOCTYPE html>

<html>

<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/angular.
min.js"></script>

<body>

<div ng-app="" >

<p>Enter Some text here :</p>

<p>Name: <input type="text" ng-model="language"></p>

<p>Hello : {{ language }}</p>

</div>

</body>

</html>

Expected Output : When internet
is not available

When u connect internet

Sample application using ng-init
directive

<!DOCTYPE html>

<html>

<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.
min.js"></script>

<body>

<div ng-app="" ng-init="quantity=1;price=5">

<h2>Cost Calculator</h2>

Quantity: <input type="number" ng-model="quantity">

Price: <input type="number" ng-model="price">

<p>Total in dollar: {{quantity * price}}</p>

</div>

</body>

</html>

Output

<!DOCTYPE html>

<html>

<script

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.mi

n.js"></script>

<body>

<div ng-app="" ng-init="names=['Kumar','Kiran','Rajesh']">

<p>Example on ng-repeat:</p>

<li ng-repeat="x in names">

{{ x }}

</div> </body></html>

Sample application using ng-repeat
directive

Output

WT LAB 1 to 10
PROGRAMS

Prepare these same program to ur
Theory Exams also

Exercise 1:

Design HTML fundamental Concepts.

• Headings

• Links

• Paragraph

• Images

• Tables

1) Headings
Example on Headings
The headings will be declared under <hn> Content to be added here…</hn> ,

where n can be value range from 1 to 6.

<!DOCTYPE html>
<html>

<head>
<title> My First Example on Headings </title>
</head>

<body>
<h1>My First Heading with H1 Size </h1>

<h2>My First Heading with H2 Size </h2>
<h3>My First Heading with H3 Size </h3>
<h4>My First Heading with H4 Size </h4>
<h5>My First Heading with H5 Size </h5>
<h6>My First Heading with H6 Size </h6>
</body>

</html>

2) Links

The HTML <a> tag defines a hyperlink. It has the following syntax:
link text

Example program
<!DOCTYPE html>
<html>
<head>
<title> Example on HTML Links </title>
</head>

<body>
<h1>HTML Links</h1>
<p>Click Here for More

Information !</p>
</body>
</html>

3)Paragraph
<p> is the tag which is used to display the content in paragraph manner < /p>
Example program
<!DOCTYPE html>
<html>
<head>
<title> Example on HTML Paragraph </title>
</head>

<body>
<p> This is one of the main tag

Which is used to display the content in paragraph manner

Here we can give either single line or multiple lines and display
whole content in paragraph

</p>
</body>
</html>

4) Images

Example

<!DOCTYPE html>
<html>
<body>
<h2>HTML Image</h2>
<img src=“img_girl.jpg" alt="Girl in a jacket ”

width="500" height="600">
</body>

</html>

5) tables

Example on rowspan and colspan

Exercise 2: Design HTML fundamental
constructs. (i) Frames (ii) Forms and
HTML controls

i)Frames

ii) Html Forms

Exercise 3: Design Cascading style
sheets
(i) Internal
(ii) External
(iii) Inline

1) Internal Style Sheet

2)Inline style sheet

<!DOCTYPE html>
<html>
<body>
<h1 style="color:blue;text-align:center;">
This is a heading</h1>
<p style="color:red;">This is a paragraph.</p>
</body>
</html>

3)External Style Sheet(External.html)

abc.css file

Element Selectors
<!DOCTYPE html>

<html>

<head>

<style>

p.intro {

background-color: yellow;

}</style>

</head>

<body>

<h1>Demo of the element.class selector</h1>

<div class="intro">

<p>My name is Donald.</p>

<p>I live in Duckburg.</p>

</div>

<p>My best friend is Mickey.</p>

<p class="intro">My best friend is Mickey.</p></body></html>

Exercise 4

Exercise 4:

Write an XML file which will display the Book

information which includes the following: (i) Title of the book

(ii) Author Name (iii) ISBN number (iv) Publisher name (v)

Edition (vi) Price

(a) Write a Document Type Definition (DTD) to validate

the above XML file.

(b) Write a XML Schema Definition (XSD)

Sample DTD for Book

Book.xml

Contd..

Contd..

book.xsl

Contd…

Lab Exercise 5:Create a simple JSP to print the current
Date and Time.

Lab Exercise 6:Create a simple JSP a) Display current IP-
Address of the System b) Find out the Square root for a

Number

6 b) Find out the Square root for a Number

Lab Exercise 7:Develop JSP program calculates factorial values for an integer
number, while the input is taken from an HTML form.

Index.jsp

Exercise 7: Develop JSP program calculates factorial values
for an integer number, while the input is taken from an

HTML form.

Exercise 8:Develop JSP program shows a Sample Order Form

Catalog.jsp

Exercise 9:
a) MYSQL connectivity using Type 4 Driver for Data
Retrieval

Before executing the program,just try to create
database with following tables

create database vasavi;

use vasavi;
create table emp(id int(10),name varchar(40),age int(3));

insert into emp values(1,'praveen',31);

insert into emp values(2,'Kumar',30);

insert into emp values(3,'Sowmya',29);

Exercise 9:
b) MYSQL connectivity using Type 4 Driver for Data
Update

Exercise 9:
c) MYSQL connectivity using Type 4 Driver for Data
Deletion

Database Tables for Delete Operation Program

• CREATE DATABASE "vasavi";

• USE "vasavi";

• CREATE TABLE /*!32312 IF NOT EXISTS*/ "student" ("stdno" int(50) ,

"stdname" varchar(50) , "stdmarks" int(10));

• Try to insert some student details in the above
table.s

Exercise 9:
d) MYSQL connectivity using Type 4 Driver for Data
Insertion using Prepared Statement

Exercise 10: Design a simple Node JS application

How to run the hello.js program

Now execute the hello.js to start the server as follows −

