

UNIT-2 LINKED LISTS
Linked List:
A linked list is a non-sequential collection of data items(not in consecutive memory locations). For every data item in a linked list, there is an associated pointer that would give the memory location of the next data item in the linked list.

[bookmark: _GoBack]
Sparse Matrix Page 1

Disadvantages of arrays:
· The size of the array is fixed, this size is specified at compile time. This makes the programmers to allocate arrays, which seems "large enough" than required.
· Inserting new elements at beginning of array is very expensive because existing elements need to be shifted over to make front index free.

	2
	3
	4
	5
	6
	7
	
	

Now If we wish to insert 1 at 1st position shift all elements to right, which takes lot of time

	1
	2
	3
	4
	5
	6
	7
	

· Deleting an element from an array is not possible(memory can not be freed). Linked lists have the strength, to allocate and deallocate required memory

· Generally array's allocates the memory for all its elements in one block sequentially whereas linked lists doesn’t follow sequential memory allocation. Linked lists allocate memory for each element at different locations and only when necessary.

Advantages of linked lists:
1. Linked lists are dynamic data structures. i.e., they can grow or shrink during the execution of a program.
2. Linked lists have efficient memory utilization. Here, memory is not preallocated. Memory is allocated whenever it is required and it is de-allocated (removed) when it is no longer needed.
3. Insertion and Deletions are easier and efficient. Linked lists provide flexibility in inserting a data item at a specified position and deletion of the data item from the given position.

Disadvantages of linked lists:
1. It consumes more space because every node requires a additional pointer to store address of the next node.
2. Searching a particular element in list is difficult and also time consuming, as there will be no concept of indexing like in arrays
Types of Linked Lists:
1. Single Linked List.
2. Double Linked List.
3. Circular Linked List.
4. Circular Double Linked List.

1

A single linked list is one in which all nodes are linked together, with only one link from one node to next node in single direction. Hence, it is also called as linear linked list.

A double linked list is one in which all nodes are linked together by two links which helps in accessing both the successor node (next node) and predecessor node (previous node) from any node within the list. Therefore each node in a double linked list has two link fields (pointers) to point to the left node (previous) and the right node (next). This helps to traverse list in forward direction and backward direction.

A circular linked list is one, which has no beginning and no end. A single linked list can be made a circular linked list by simply storing address of the very first node in the link field of the last node.

[image:]

Single Linked List:
A linked list allocates space for each element separately called a "node". Each node contains two fields; a "data" field to store whatever element, and a "next" field which is a pointer used to link to the next node. Each node is allocated memory using malloc(), so the node memory continues to exist until it is explicitly de-allocated using free().

Single Linked list

[image:]

The beginning of the linked list is stored in a "Head" pointer which points to the first node. The first node contains a pointer(*next) to the second node. The second node contains a pointer to the third node, ... and so on. The last node in the list has its next field set to NULL to mark the end of the list. We can access any node in the list by starting at the Head and following the next pointers.

The basic operations in a single linked list are:
· Creation.
· Insertion.
· Deletion.
· Traversing(Display).
Creating a node for Single Linked List:
Creating a singly linked list starts with creating a node structure. Sufficient memory has to be allocated for creating a node using dynamic memory allocation.

14

A Node Structure

struct Node
{

int data;
struct Node *next;
};
struct Node * Head = NULL; struct Node *temp = NULL:

For insertion, Memory is to be allocated for the new node. The new node will contain empty data field and empty next field. The data field of the new node is then stored with the information read from the user. The next field of the new node is assigned to NULL.
struct Node *temp = (struct Node *)malloc(sizeof(struct Node);NULL

temp

data

next

The newly created node can then be inserted at three different places namely:
· Inserting a node at the beginning.
· Inserting a node at the end.
· Inserting a node at intermediate position.

1. Inserting a node at the beginning.
create a new node say, ptr

case 1:

List is Empty

struct node *ptr = (struct node *) malloc(sizeof(struct node *)); sacnf(Val);
ptr → data = Val

if(head==NULL)	// If List is empty new node itself will be the head node head = ptr;NULL
Val

Head

data

next

Case 2:
List is not empty
Allocate the space for the new node in the memory. This will be done by using the following statement.

ptr = (struct node *) malloc(sizeof(struct node *)); scanf(val)
ptr → data = val;

make Head as next node for newly created ptr node ptr->next = head;
Finally, we need to make the new node as the Head node head = ptr;
[image:]
2. Inserting a node at the end:
create a new node say, ptr

struct Node *ptr = (struct node *) malloc(sizeof(struct node *)); sacnf(Val);
ptr → data = Val; ptr->next = NULL;

case 1:

List is Empty

if(head==NULL) head = ptr;NULL
Val

Head

data

next

Case 2:
List is not empty
Step 1: Reach last Node in list, store this node addres in temp,

struct Node *temp; temp = head
while (temp -> next != NULL)
{
temp = temp -> next;
}

Step 2: now make last node next(temp->next) point to newly created node ptr

temp->next = ptr;

[image:]

3. Inserting a node into the single linked list at a specified intermediate position other than beginning and end.

step 1: reach the node(temp) after which we want to add our newly created node(ptr)

temp=head; for(i=0;i<loc;i++)
{
temp = temp->next;
// temp will become NULL, when loc specified is is greater than no of nodes in in the list
if(temp == NULL)
{
return;
}
}

step 2: make newly created node point to temp next node, later make ptr as temp next node
ptr->next = temp->next temp -> next = ptr

[image:]

Deletion of a node:
A node can be deleted from the list from three different places namely.
4. Deleting a node at the beginning.
5. Deleting a node at the end.
6. Deleting a node at intermediate position.
Note: Where ever the node is deleted, it is our Responsibility to dellocate/free the memory of that node(so that it can be used by other processes)

4. Deleting a node at the beginning:
Step 1: store the address of very first node in ptr, Step 2: make 2nd node of list as head
Step 3: free memory occupied by first node(ptr)

ptr = head;
head = head->next; free(ptr);
[image:]

5. Deleting a node at the end:

Step 1: reach 2nd last node of list and store its adress say ptr1 Step 2: store last node address at ptr
Step 3: free memory occupied by last node(ptr)
ptr1 = head;
while(ptr1->next->next != NULL)
{
ptr1 = ptr1 ->next;	// ptr1 is the second last node
}
ptr = ptr1->next;	// ptr is the last node ptr1->next = NULL;
free(ptr);
[image:]

6. Deleting a node at Intermediate position:
The following steps are followed, to delete a node from an intermediate position in the list (List must contain more than two node).

Reach the node whose next node has to be deleted,
we stand at node called ptr1, and we want to delete its next node ptr1->next is ptr(we want to delete ptr)
[image:]

To delete ptr

ptr1->next = ptr->next	// attach remaining list of nodes after ptr to ptr1 free(ptr);

Traversal and displaying a list (Left to Right):

Traversing is the most common operation that is performed in almost every scenario of singly linked list. Traversing means visiting each node of the list once in order to perform some operation on that. This will be done by using the following statements.

ptr = head;
while (ptr!=NULL)
{
print(ptr->data); ptr = ptr -> next;
}

Double Linked List:

A double linked list is a two-way list in which all nodes will have two links. This helps in accessing both successor node and predecessor node from the given node position. It provides bi- directional traversing. Each node contains three fields:
· Left link.
· Data.
· Right link.
The left link points to the predecessor node and the right link points to the successor node. The data field stores the required data.
The basic operations in a double linked list are:
· Creation.
· Insertion.
· Deletion.
· Traversing.

The beginning of the double linked list is stored in a "Head" pointer which points to the first node. The first node‟s left link and last node‟s right link is set to NULL.
Creating a node for Double Linked List:
Creating a double linked list starts with creating a node. Sufficient memory has to be allocated for

creating a node.

Struct Node
{

struct Node *prev; int data;
struct Node *next;
};

Inserting a node at the beginning:

Allocate the space for the new node in the memory. This will be done by using the following statement.
ptr = (struct node *)malloc(sizeof(struct node)); ptr -> next = NULL;
ptr -> prev = NULL; scanf(val);
ptr->data = val;

Case 1: list is empty (head is NULL)

make newly created node itself as Head node head=ptr;

prev

data

next

Head

Case 2: List is not empty

If list is not empty, store adress of Head under newly created node, ptr->next ptr->next = head;

store address of newly created node under Head->prev head→prev=ptr;

Finally make the newly attached node as head of the list head = ptr;

[image:]

Inserting a node at the end:
Allocate the space for the new node in the memory. This will be done by using the following statement.
ptr = (struct node *)malloc(sizeof(struct node)); ptr -> next = NULL;
ptr -> prev = NULL; scanf(val);
ptr->data = val;

Case 1: list is empty (head is NULL)

make newly created node itself as Head node head=ptr;

prev

data

next

Head

Case 2: List is not empty

we have to traverse the whole list in order to reach the last node of the list. Initialize the pointer temp to head and traverse the list by using this pointer.

temp = head;
while (temp->next != NULL)

{
temp = temp → next;
}
After terminating from while loop temp will be pointing to last node of list, attach newly created node(ptr) as next node of temp. then ptr will be added at end of the list

temp→next =ptr; ptr → prev = temp;
[image:]

Inserting a node at an intermediate position:
Allocate the memory for the new node.

ptr = (struct node *)malloc(sizeof(struct node)); ptr -> next =NULL;
ptr -> prev = NULL;

reach the specified node, after which the new node has to be inserted using any pointer say temp.

temp=head;
for(i=0;i<loc;i++)
{
temp = temp->next;
// temp will become NULL, when loc specified is is greater than no of nodes in in the list
if(temp == NULL)
{
return;
}
}

now add newly created node ptr, after temp

ptr → next = temp → next;	// make list after temp as next of new node ptr ptr → prev = temp;	// new node prev list will be temp ny this
temp → next = ptr;	//temp next now onwards will start from new node ptr temp → next → prev = ptr;		// make the previous pointer of the next node of temp
point to the new node.
[image:]
Deleting a node at the beginning:

Store the address under head pointer to another pointer say ptr, and shift the head pointer to its next node.

Ptr = head;
head = head → next;
make the prev of this new head node point to NULL
head → prev = NULL;
Now free the pointer ptr by using the free function.
free(ptr);

[image:]

Deleting a node at the end:

Step 1: reach 2nd last node of list and store its adress say ptr1 Step 2: store last node address at ptr
Step 3: free memory occupied by last node(ptr)

ptr1 = head;
while(ptr1->next->next != NULL)
{
ptr1 = ptr1 ->next;	// ptr1 is the second last node
}
ptr = ptr1->next;	// ptr is the last node ptr1->next = NULL;
free(ptr);

[image:]

Traversal and displaying a list (Left to Right):
To display the information, you have to traverse the list, node by node from the first node, until the end of the list is reached. The function traverse_left_right() is used for traversing and displaying the information stored in the list from left to right.
Traversal and displaying a list (Right to Left):
To display the information from right to left, you have to traverse the list, node by node from the first node, until the end of the list is reached. The function traverse_right_left() is used for traversing and displaying the information stored in the list from right to left.
image1.png

image2.png

image3.jpeg

image4.jpeg

image5.jpeg

image6.jpeg

image7.jpeg

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

