

UNIT- 5	GRAPHS
	
Graph G is a pair (V, E), where V is a finite set of vertices and E is a finite set of edges. We will often denote n = |V|, e = |E|.

A graph is generally displayed as figure 7.5.1, in which the vertices are repres e n t e d by circles and the edges by lines.

An edge with an orientation (i.e., arrow head) is a directed edge, while an edge with no orientation is our undirecte d edge.

If all	the	edges	in	a	graph	are	undirecte d,	then	the	graph	is	an undirecte d graph. The graph of figures 7.5.1(a) is undirecte d graphs. If all the edges are directed; then the graph is a directed graph. The graph of figure 7.5. 1(b) is a directed graph. A directed graph is also called as digraph.

A graph G is connecte d if and only if there is a simple path between any two nodes in G.

A graph G is said to be complete if every node a in G is adjacent to every other node v in G. A complete graph with n nodes will have n(n- 1)/2 edges. For example, Figure 7.5. 1.(a) and figure 7.5. 1.(d) are complete graphs.

A directed graph G is said to be connecte d, or strongly connected, if for each pair u, v for nodes in G there is a path from u to v and there is a path from v to u. On the other hand, G is said to be unilaterally connected if for any pair u, v of nodes in G there is a path from u to v or a path from v to u. For example, the digraph shown in figure 7.5. 1 (e) is strongly connected.B
D
A
B
v 1
A
C
E
G
E
v 4
v 2
C
D
(a)
F
(b)
v 3
(c)
v 1
v 1
v 1
v 1
v 4
v 2
v 4
v 2
v 2
v 3
v 4
v 2
(d)
v 3
(e)
v 3
(f)
v 3
(g)
v 4
v 5
v 6
v 7

Fi g u r e 7 . 5 . 1 V a r i o u s Gr a p h s

We can assign weight function to the edges: wG (e) is a weight of edge e  E. The graph which has such function assigned is called weighted graph.

The number of incoming edges to a vertex v is called in–degree of the vertex (denote indeg(v)). The number of outgoing edges from a vertex is called out-degree (denote outdeg(v)). For example, let us consider the digraph shown in figure 7.5.1(f),

indegree(v1) = 2 outdegree(v1) = 1
indegree(v2) = 2 outdegree(v2) = 0

A path is a sequence of vertices (v1, v2,	, vk), where for all i, (vi, vi+1)  E. A path is simple if all
vertices in the path are distinct. If there a path containing one or more edges which starts from a
vertex Vi and terminates into the same vertex then the path is known as a cycle. For example, there is a cycle in figure 7.5.1 (a), figure 7.5.1 (c) and figure 7.5.1 (d).

If a graph (digraph) does not have any cycle then it is called acyclic graph. For example, the graphs of figure 7.5.1 (f) and figure 7.5.1 (g) are acyclic graphs.
A graph G’ = (V’, E’) is a sub-graph of graph G = (V, E) iff V’  V and E’  E.
A Forest is a set of disjoint trees. If we remove the root node of a given tree then it becomes forest. The following figure shows a forest F that consists of three trees T1, T2 and T3.

A F or e s t F
A graph that has either self loop or parallel edges or both is called multi-graph.

Tree is a connected acyclic graph (there aren’t any sequences of edges that go around in a loop). A spanning tree of a graph G = (V, E) is a tree that contains all vertices of V and is a subgraph of G. A single graph can have multiple spanning trees.

Let T be a spanning tree of a graph G. Then

1. Any two vertices in T are connected by a unique simple path.
2. If any edge is removed from T, then T becomes disconnected.
3. If we add any edge into T, then the new graph will contain a cycle.
4. Number of edges in T is n-1.

Representation of Graphs:

There are two ways of representing digraphs. They are:
· Adjacency matrix.
· Adjacency List.
· Incidence matrix.

Adjacency matrix:

In this representation, the adjacency matrix of a graph G is a two dimensional n x n matrix, say A = (ai,j), where

a	  1

if there

is an edge

from
i
i to v j

i , j0


·
otherwise

The matrix is symmetric in case of undirected graph, while it may be asymmetric if the graph is directed. This matrix is also called as Boolean matrix or bit matrix.A
P
X
B
D
Y
Q	R
Z
T1	C
E
F
T2
T3

	
	1
	
	
	
	1
	2
	3
	4
	5

	
	
	
	
	1
	0
	1
	1
	0
	1

	G 1 :
	2
	
	
	3
	
	2
	0
	0
	1
	1
	1

	
	
	
	
	
	
	3
	0
	0
	0
	1
	0

	
	(a)
	4
	
	5
	(b)
	4
	0
	0
	0
	0
	0

	
	
	
	
	
	
	5
	0
	0
	1
	1
	0

Fi g u r e 7 . 5 . 2 . A gr a p h a n d it s A d j a c e n c y m a t r i x

Figure 7.5.2(b) shows the adjacency matrix representation of the graph G1 shown in figure 7.5.2(a). The adjacency matrix is also useful to store multigraph as well as weighted graph. In case of

multigraph representation, instead of entry 0 or 1, the entry will be between number of edges between two vertices.

[image:]In case of weighted graph, the entries are weights of the edges between the vertices. The adjacency matrix for a weighted graph is called as cost adjacency matrix. Figure 7.5.3(b) shows the cost adjacency matrix representation of the graph G2 shown in figure 7.5.3(a).

	
	
	
B
	
	
	
	
	
	
D
	
	
	
	
	
	

	G2:
	
	
	
	
	4
	
	
	
	
	
	
	
	
	A
	B
	C
	D
	E
	F
	G
	

	
3

A
	

(a)
	

6
	
2
	

C
	
	1

2
	

4
	
2

E

2

F
	

1
	4

1
	

G
	

(b)
	A B C D E F
	0
3
6



	3
0
2
4


	6
2
0
1
4
2
	
4
1
0
2

	

4
2
0
2
	

2

2
0
	


4
1
1
	

Fi g u r e 7 . 5 . 3 W e i g h t e d g r a p h a n d it s Co s t a d j a c e n c y m a t r i x

Adjace n cy List :

In this repres en t a t ion, the n rows of the adjacency matrix are repres e n t e d as n linked lists. An array Adj[1, 2, n] of pointers where for 1 < v < n, Adj[v] points to a linked list containing the vertices which are adjacent to v (i.e. the vertices that can be reached from v by a single edge). If the edges have weights then these weights may also be stored in the linked list elements. For the graph G in figure 7.5.2 (a), the adjacency list in shown in figure 7.5.4 (b).

	1
	1
	1

	
0
	
0
	1

	0
	1
	0

Fi g u r e 7 . 5 . 4 A d j a c e n c y m a t r i x a n d a d j a c e n c y l i st1
2
3
1
1
2
2
3
3
(a) A d j a c e n c y M a t r i x
(b) A d j a c e n c y L i st
2
3
3
2
1

Incidence Matrix:

In this representation, if G is a graph with n vertices, e edges and no self loops, then incidence matrix A is defined as an n by e matrix, say A = (ai,j), where

a	  1

if there

is an

edge
j
incident

to v i

i , j0


·
otherwise

Here, n rows correspond to n vertices and e columns correspond to e edges. Such a matrix is called as vertex-edge incidence matrix or simply incidence matrix.

B
c
D
a
b
d
f
e
A
C
h
E
i
G
g
k
j
l
(a)
F
a	b	c	d	e	f	g	h	i	j	k	l A	1	0	0	0	0	0	1	0	0	0	0	0
B	1	1	1	0	0	0	0	0	0	0	0	0
C	0	1	0	1	0	0	1	1	0	0	1	0
D	0	0	1	1	1	1	0	0	0	0	0	0
E	0	0	0	0	1	0	0	1	1	1	0	0
(b)
F	0	0	0	0	0	0	0	0	0	1	1	1
G	0	0	0	0	0	1	0	0	1	0	0	1

Fi g u r e 7 . 5 . 4 Gr a p h a n d it s i n c i d e n c e m a t r i x

Figure 7.5.4(b) shows the incidence matrix representation of the graph G1 shown in figure 7.5.4(a).

7.6. Minimum Spanning Tree (MST):

A spanning tree for a connected graph is a tree whose vertex set is the same as the vertex set of the given graph, and whose edge set is a subset of the edge set of the given graph. i.e., any connected graph will have a spanning tree.

Weight of a spanning tree w(T) is the sum of weights of all edges in T. Minimum spanning tree (MST) is a spanning tree with the smallest possible weight.

Example:

T h r e e (o f m a n y p o s s i b l e) s p a n n i n g t r e e s f r o m g r a p h G:
A g r a p h G:
G:

1
3
2
1
6
5
G: 3
4
2

A w e i g h t e d g r a p h G:	T h e m i n i m a l s p a n n i n g t r e e f r o m w e i g h t e d g r a p h G:

Let's consider a couple of real-world examples on minimum spanning tree:

· One practical application of a MST would be in the design of a network. For instance, a group of individuals, who are separated by varying distances, wish to be connected together in a telephone network. Although MST cannot do anything about the distance
from one connection to another, it can be used to determine the least cost paths with no cycles in this network, thereby connecting everyone at a minimum cost.

· Another useful application of MST would be finding airline routes. The vertices of the graph would represent cities, and the edges would represent routes between the cities. MST can be applied to optimize airline routes by finding the least costly paths with no
cycles.

Minimum spanning tree, can be constructed using any of the following two algorithms:

1. Kruskal’s algorithm and
2. Prim algorithm.

Both algorithms differ in their methodology, but both eventually end up with the MST. Kruskal's algorithm uses edges, and Prim’s algorithm uses vertex connections in determining the MST.

7.6.1. [bookmark: 7.6.1._Kruskal’s_Algorithm]Kruskal’s Algorithm

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e. picking an edge with the least weight in a MST).

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the shortest (least cost) edge, while avoiding the creation of cycles, until (n - 1) edges have been added.
Sometimes two or more edges may have the same cost.

The order in which the edges are chosen, in this case, does not matter. Different MST’s may result, but they will all have the same total cost, which will always be the minimum cost.

Kruskal’s Algorithm for minimal spanning tree is as follows:

1. Make the tree T empty.
2. Repeat the steps 3, 4 and 5 as long as T contains less than n - 1 edges and E is not empty otherwise, proceed to step 6.
3. Choose an edge (v, w) from E of lowest cost.
4. Delete (v, w) from E.
5. If (v, w) does not create a cycle in T
then Add (v, w) to T
else discard (v, w)
6. If T contains fewer than n - 1 edges then print no spanning tree.

Exampl e 1:

Construct the minimal spanning tree for the graph shown below:
1
10
45
2
50
40
30
35
3
4
25
55
5
20
6
15

Arrange all the edges in the increasing order of their costs:

	Cost
	10
	15
	20
	25
	30
	35
	40
	45
	50
	55

	Edge
	(1, 2)
	(3, 6)
	(4, 6)
	(2, 6)
	(1, 4)
	(3, 5)
	(2, 5)
	(1, 5)
	(2, 3)
	(5, 6)

The stages in Kruskal’s algorithm for minimal spanning tree is as follows:

	Edge
	Cost
	Stag e s
	in
	Kruskal’ s
	algorit h m
	Remark s

	
(1, 2)
	
10
	

1
	
	

2
	
	

3
	
The edge between vertices 1 and 2 is the first edge selected. It is included in the spanning tree.

	
	
	4
	
	
	
	
	

	
	
	
	
	
	5
	
	

	
	
	
	6
	
	
	
	

	
(3, 6)
	
15
	

1
	
	

2
	
	

3
	
Next, the edge betwee n vertices 3 and 6 is selected and included in the tree.

	
	
	4
	
	
	
	
	

	
	
	
	
	
	5
	
	

	
	
	
	6
	
	
	
	

	
(4, 6)
	
20
	

1
	
	

2
	
	

3
	
The edge between vertices next included in the tree.
	
4
	
and
	
6
	
is

	
	
	4
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	5
	
	
	
	
	
	

	
	
	
	6
	
	
	
	
	
	
	
	

	
(2, 6)
	
25
	

1
	
	

2
	
	

3
	
The edge between vertices 2 and 6 is considere d next and included in the tree.

	
	
	4
	
	
	
	
	

	
	
	
	
	
	5
	
	

	
	
	
	6
	
	
	
	

	
(1, 4)
	
30
	
Reject
	
The edge between the vertices 1 and 4 is discarded as its inclusion creates a cycle.

	
(3, 5)
	
35
	

1
	
	

2
	
	

3
	
Finally, the edge between vertices 3 and
5 is considere d and included in the tree built. This completes the tree.

	
	
	4
	
	
	5
	
	The cost of the minimal spanning tree is

	
	
	
	6
	
	
	
	105 .

[image:][image:][image:][image:][image:][image:][image:]Exampl e 2:

Construct the minimal spanning tree for the graph shown below:
1	2 8
1 0
2
1 4
6
1 6
7
2 5
2 4
3
5	1 8
1 2
2 2
4

Soluti o n:

[image:][image:][image:][image:][image:][image:]Arrange all the edges in the increasing order of their costs:

	Cost
	10
	12
	14
	16
	18
	22
	24
	25
	28

	Edge
	(1, 6)
	(3, 4)
	(2, 7)
	(2, 3)
	(4, 7)
	(4, 5)
	(5, 7)
	(5, 6)
	(1, 2)

[image:][image:][image:][image:]The stages in Kruskal’s algorithm for minimal spanning tree is as follows:

	Edge
	Cost
	Stag e s in Kruskal’ s algorit h m
	Remark s

	
(1, 6)
	
10
	
1
2

6
3
7

5
4
	
The edge between vertices 1 and 6 is the first edge selected. It is included in the spanning tree.

	
(3, 4)
	
12
	
1
2

6
3
7

5
4
	
Next, the edge betwee n vertices 3 and 4 is selected and included in the tree.

	
(2, 7)
	
14
	
1
2

6
3
7

5
4
	
The edge between vertices 2 and 7 is next included in the tree.

	
(2, 3)
	
16
	
1
2

6
3
7

5
4
	
The edge between vertices 2 and 3 is next included in the tree.

	
(4, 7)
	
18
	
Reject
	
The edge between the vertices 4 and 7 is discarded as its inclusion creates a cycle.

	
(4, 5)
	
22
	
1
2

6
3
7

5
4
	
The edge between vertices 4 and 7 is considere d next and included in the tree.

	
(5, 7)
	
24
	
Reject
	
The edge between the vertices 5 and 7 is discarded as its inclusion creates a cycle.

	
(5, 6)
	
25
	
	
	
1
	
	
	
	
	
Finally, the edge between vertices 5 and 6 is

	
	
	
	
	
	
	2
	
	
	considered and included in the tree built. This
completes the tree.

	
	
	6
	
	
	
	
	
	
	

	
	
	
	
	
	7
	
	
	3
	The cost of the minimal spanning tree is

	
	
	
	
5
	
	
	
	
	
	99 .

	
	
	
	
	
	
	
	4
	
	

7.6.2. [image:]2 .	Reach a b i l i ty Matrix (Warshall’s Algorithm) :

Warshall’s algorithm requires to know which edges exist and which do not. It doesn’ t need to know the lengths of the edges in the given directed graph. This information is conveniently displayed by adjacency matrix for the graph, in which a ‘1’ indicates the existence of an edge and ‘0’ indicates non- existence.

A d j a c e n c y M a t r i x

W a r s h a l l’ s A l g o r it h m
A l l Pa ir s Rec h a b i l it y M a t r i x

It begins with the adjacency matrix for the given graph, which is called A0, and then updates the matrix ‘n’ times, producing matrices called A 1, A2, , An and then stops.

In warshall’s algorithm the matrix Ai merely contains information about the existence of i – paths. A 1 entry in the matrix Ai will correspond to the existence of an i – paths and O entry will correspond to non- existence. Thus when the algorithm stops, the final matrix, the matrix An, contains the desired connectivity information.

A 1 entry indicates a pair of vertices, which are connected, and O entry indicates a pair, which are not. This matrix is called a reachability matrix or path matrix for the graph. It is also called the transitive closure of the original adjacency matrix.

The update rule for computing Ai from Ai-1 in warshall’s algorithm is:

Ai [x, y] = Ai-1 [x, y] ۷ (Ai-1 [x, i] ٨ Ai-1 [i, y])	----	(1)

Exampl e 1:

Use warshall’s algorithm to calculate the reachability matrix for the graph:

4
1	4
5	6
7	1 1

1
2	3
7
We begin with the adjacency matrix of the graph ‘A0’

1 0	1

2 0	0A 

0	3 0	0


1	0 

1	1 
0	0 


4 1	1	1	0 

The first step is to compute ‘A1’ matrix. To do so we will use the updating rule – (1).

Before doing so we notice that only 1 entry in A0 must remain 1 in A1, since in Boolean algebra 1 + (any thing) = 1. Since these are only nine 0 entries in A0, there are only nine entries in A0 that need to be updated.

	A1[1,
	1]
	=
	A0[1,
	1]
	۷ (A0[1,
	1]
	٨ A0[1,
	1])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A1[2,
	1]
	=
	A0[2,
	1]
	۷ (A0[2,
	1]
	٨ A0[1,
	1])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A1[2,
	2]
	=
	A0[2,
	2]
	۷ (A0[2,
	1]
	٨ A0[1,
	2])
	=
	0
	۷
	(0
	٨ 1)
	=
	0

	A1[3,
	1]
	=
	A0[3,
	1]
	۷ (A0[3,
	1]
	٨ A0[1,
	1])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A1[3,
	2]
	=
	A0[3,
	2]
	۷ (A0[3,
	1]
	٨ A0[1,
	2])
	=
	0
	۷
	(0
	٨ 1)
	=
	0

	A1[3,
	3]
	=
	A0[3,
	3]
	۷ (A0[3,
	1]
	٨ A0[1,
	3])
	=
	0
	۷
	(0
	٨ 1)
	=
	0

	A1[3,
	4]
	=
	A0[3,
	4]
	۷ (A0[3,
	1]
	٨ A0[1,
	4])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A1[4,
	4]
	=
	A0[4,
	4]
	۷ (A0[4,
	1]
	٨ A0[1,
	4])
	=
	0
	۷
	(1
	٨ 0)
	=
	0

1 0	1	1	0 
□	
2 0	0	1	1 A 

1	3 0	0	0	0 
□	
4 1	1	1	0 

Next, A2 must be calculated from A1; but again we need to update the 0 entries,

	A2[1,
	1]
	=
	A1[1,
	1]
	۷ (A1[1,
	2]
	٨ A1[2,
	1])
	=
	0
	۷
	(1
	٨ 0)
	=
	0

	A2[1,
	4]
	=
	A1[1,
	4]
	۷ (A1[1,
	2]
	٨ A1[2,
	4])
	=
	0
	۷
	(1
	٨ 1)
	=
	1

	A2[2,
	1]
	=
	A1[2,
	1]
	۷ (A1[2,
	2]
	٨ A1[2,
	1])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A2[2,
	2]
	=
	A1[2,
	2]
	۷ (A1[2,
	2]
	٨ A1[2,
	2])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A2[3,
	1]
	=
	A1[3,
	1]
	۷ (A1[3,
	2]
	٨ A1[2,
	1])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A2[3,
	2]
	=
	A1[3,
	2]
	۷ (A1[3,
	2]
	٨ A1[2,
	2])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A2[3,
	3]
	=
	A1[3,
	3]
	۷ (A1[3,
	2]
	٨ A1[2,
	3])
	=
	0
	۷
	(0
	٨ 1)
	=
	0

	A2[3,
	4]
	=
	A1[3,
	4]
	۷ (A1[3,
	2]
	٨ A1[2,
	4])
	=
	0
	۷
	(0
	٨ 1)
	=
	0

	A2[4,
	4]
	=
	A1[4,
	4]
	۷ (A1[4,
	2]
	٨ A1[2,
	4])
	=
	0
	۷
	(1
	٨ 1)
	=
	1

1  0	1

2  0	0A 

2	3  0	0


1	1 

1	1 
0	0 


4 1	1	1	1 

This matrix has only seven 0 entries, and so to compute A3, we need to do only seven computations.

	A3[1,
	1]
	=
	A2[1,
	1]
	۷ (A2[1,
	3]
	٨ A2[3,
	1])
	=
	0
	۷
	(1
	٨ 0)
	=
	0

	A3[2,
	1]
	=
	A2[2,
	1]
	۷ (A2[2,
	3]
	٨ A2[3,
	1])
	=
	0
	۷
	(1
	٨ 0)
	=
	0

	A3[2,
	2]
	=
	A2[2,
	2]
	۷ (A2[2,
	3]
	٨ A2[3,
	2])
	=
	0
	۷
	(1
	٨ 0)
	=
	0

	A3[3,
	1]
	=
	A2[3,
	1]
	۷ (A2[3,
	3]
	٨ A2[3,
	1])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A3[3,
	2]
	=
	A2[3,
	2]
	۷ (A2[3,
	3]
	٨ A2[3,
	2])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A3[3,
	3]
	=
	A2[3,
	3]
	۷ (A2[3,
	3]
	٨ A2[3,
	3])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A3[3,
	4]
	=
	A2[3,
	4]
	۷ (A2[3,
	3]
	٨ A2[3,
	4])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

1 0	1	1	1 
□	
2 0	0	1	1 A 

3	3 0	0	0	0 
□	
4 1	1	1	1 

Once A3 is calculated, we use the update rule to calculate A4 and stop. This matrix is the reachability matrix for the graph.

	A4[1,
	1]
	=
	A3 [1,
	1]
	۷ (A3 [1,
	4]
	٨ A3 [4,
	1])
	=
	0
	۷ (1
	٨ 1)
	=
	0
	۷ 1
	=
	1

	A4[2,
	1]
	=
	A3 [2,
	1]
	۷ (A3 [2,
	4]
	٨ A3 [4,
	1])
	=
	0
	۷ (1
	٨ 1)
	=
	0
	۷ 1
	=
	1

	A4[2,
	2]
	=
	A3 [2,
	2]
	۷ (A3 [2,
	4]
	٨ A3 [4,
	2])
	=
	0
	۷ (1
	٨ 1)
	=
	0
	۷ 1
	=
	1

	A4[3,
	1]
	=
	A3 [3,
	1]
	۷ (A3 [3,
	4]
	٨ A3 [4,
	1])
	=
	0
	۷ (0
	٨ 1)
	=
	0
	۷ 0
	=
	0

	A4[3,
	2]
	=
	A3 [3,
	2]
	۷ (A3 [3,
	4]
	٨ A3 [4,
	2])
	=
	0
	۷ (0
	٨ 1)
	=
	0
	۷ 0
	=
	0

	A4[3,
	3]
	=
	A3 [3,
	3]
	۷ (A3 [3,
	4]
	٨ A3 [4,
	3])
	=
	0
	۷ (0
	٨ 1)
	=
	0
	۷ 0
	=
	0

	A4[3,
	4]
	=
	A3 [3,
	4]
	۷ (A3 [3,
	4]
	٨ A3 [4,
	4])
	=
	0
	۷ (0
	٨ 1)
	=
	0
	۷ 0
	=
	0

1 1	1	1	1 
□	
2 1	1	1	1 A 

4	3 0	0	0	0 
□	
4 1	1	1	1 

Note that according to the algorithm vertex 3 is not reachable from itself
1. This is because	as can be seen in the graph, there	is no path from vertex 3 back to itself.

7.6.3. 3 .	Traversin g a Graph:

Many graph algorithms require one to systematically examine the nodes and edges of a graph G. There are two standard ways to do this. They are:
· Breadth first traversal (BFT)
· Depth first traversal (DFT)
The BFT will use a queue as an auxiliary structure to hold nodes for future processing and the DFT will use a STACK.

During the execution of these algorithms, each node N of G will be in one of three states, called the status of N, as follows:

1. STATUS = 1 (Ready state): The initial state of the node N.

2. STATUS	=	2 (Waiting	state):	The node	N is on the	QUEUE	or STACK, waiting to be processed.

3. STATUS = 3 (Process ed state): The node N has been processed.

Both BFS and DFS impose a tree (the BFS/DFS tree) on the structur e of graph. So, we can compute	a spanning tree in a graph. The computed spanning	tree		is not		a minimum	spanning	tree.	The	spanning		trees obtained using depth first searches are called depth first spanning trees. The	spanning	trees	obtained	using		breadt h		first	searches	are	called Breadth first spanning trees.

Breadt h first searc h and travers al:

The general idea behind a breadth first travers al beginning at a starting node A is as follows. First we examine the starting node A. Then we examine all the neighbors of A. Then we examine all the neighbors of neighbors of A. And so on. We need to keep track of the neighbors of a node, and we need to guarant e e that no node is process ed more than once. This is accomplished by using a QUEUE to hold nodes that are waiting to be process ed, and by using a field STATUS that tells us the current status of any node. The spanning trees obtained using BFS are called Breadth first spanning trees.

Breadth first traversal algorithm on graph G is as follows:

This algorithm executes a BFT on graph G beginning at a starting node A.

1. Initialize all nodes to the ready state (STATUS = 1).

2. Put the starting	node	A in QUEUE and change	its status	to the waiting state (STATUS = 2).

3. Repeat the following steps until QUEUE is empty:

a. Remove the front node N of QUEUE. Process N and change the status of N to the processed state (STATUS = 3).

b. Add to the rear of QUEUE all the neighbors of N that are in the ready state (STATUS = 1), and change their status to the waiting state (STATUS = 2).

4. Exit.

Depth first searc h and traversal:

Depth first search of undirecte d graph proceeds as follows: First we examine the starting node V. Next an unvisited vertex 'W' adjacent to 'V' is selected and a depth first search from 'W' is initiated. When a vertex 'U' is reached such that all its adjacent vertices have been visited, we back up to the last vertex visited, which has an unvisited vertex 'W' adjacent to it and initiate a depth first search from W. The search terminate s when no unvisited vertex can be reache d from any of the visited ones.

This algorithm is similar to the inorder travers al of binary tree. DFT algorithm is similar to BFT except now use a STACK instead of the QUEUE. Again field STATUS is used to tell us the current status of a node.

The algorithm for depth first traversal on a graph G is as follows.

This algorithm executes a DFT on graph G beginning at a starting node A.

1. Initialize all nodes to the ready state (STATUS = 1).

2. Push the starting node A into STACK and change its status to the waiting state (STATUS = 2).

3. Repeat the following steps until STACK is empty:

a. Pop the top node N from STACK. Process N and change the status of N to the processe d state (STATUS = 3).

b. Push all the neighbors of N that are in the ready state (STATUS = 1), and change their status to the waiting state (STATUS = 2).
4. Exit.

Example 1:

Consider the graph shown below. Traverse the graph shown below in breadth first order and depth first order.

A
F
C
B
D
E
G
J
K

A Gr a p h GNod
e
Adjacen c y
List
A
F, C, B
B
A, C, G
C
A, B, D, E, F,
G
D
C, F, E, J
E
C, D, G, J, K
F
A, C, D
G
B, C, E, K
J
D, E, K
K Adjacen
cEy ,lisGt f,orJgra ph G

Breadt h - first searc h and travers al:

The steps involved in breadth first traversal are as follows:

	Curre nt
Node
	
QUEUE
	Processed Nodes
	Status

	
	
	
	A
	B
	C
	D
	E
	F
	G
	J
	K

	
	
	
	1
	1
	1
	1
	1
	1
	1
	1
	1

	
	A
	
	2
	1
	1
	1
	1
	1
	1
	1
	1

	A
	F C B
	A
	3
	2
	2
	1
	1
	2
	1
	1
	1

	F
	C B D
	A F
	3
	2
	2
	2
	1
	3
	1
	1
	1

	C
	B D E
G
	A F C
	3
	2
	3
	2
	2
	3
	2
	1
	1

	B
	D E G
	A F C B
	3
	3
	3
	2
	2
	3
	2
	1
	1

	D
	E G J
	A F C B D
	3
	3
	3
	3
	2
	3
	2
	2
	1

	E
	G J K
	A F C B D E
	3
	3
	3
	3
	3
	3
	2
	2
	2

	G
	J K
	A F C B D E G
	3
	3
	3
	3
	3
	3
	3
	2
	2

	J
	K
	A F C B D E G J
	3
	3
	3
	3
	3
	3
	3
	3
	2

	K
	EMPTY
	A F C B D E G J
K
	3
	3
	3
	3
	3
	3
	3
	3
	3

For the above graph the Breadth first traversal sequence is: A F C B D E G J K.

Depth-first search and traversal:

The steps involved in depth first traversal are as follows:

	Curre nt
Node
	
Stack
	Processed Nodes
	Status

	
	
	
	A
	B
	C
	D
	E
	F
	G
	J
	K

	
	
	
	1
	1
	1
	1
	1
	1
	1
	1
	1

	
	A
	
	2
	1
	1
	1
	1
	1
	1
	1
	1

	A
	B C F
	A
	3
	2
	2
	1
	1
	2
	1
	1
	1

	F
	B C D
	A F
	3
	2
	2
	2
	1
	3
	1
	1
	1

	D
	B C E J
	A F D
	3
	2
	2
	3
	2
	3
	1
	2
	1

	J
	B	C	E
K
	A F D J
	3
	2
	2
	3
	2
	3
	1
	3
	2

	K
	B	C	E
G
	A F D J K
	3
	2
	2
	3
	2
	3
	2
	3
	3

	G
	B C E
	A F D J K G
	3
	2
	2
	3
	2
	3
	3
	3
	3

	E
	B C
	A F D J K G E
	3
	2
	2
	3
	3
	3
	3
	3
	3

	C
	B
	A F D J K G E C
	3
	2
	3
	3
	3
	3
	3
	3
	3

	B
	EMPTY
	A F D J K G E C
B
	3
	3
	3
	3
	3
	3
	3
	3
	3

A
F
B
E
G
D
L
H
C
J
I
K
M

For the above graph the Depth first traversal sequence is: A F D J K G E C B.

Exampl e 2:

Traverse the graph shown below in breadth first order, depth first order and construct the breadth first and depth first spanning trees.

[image:]A	H	INode
Adjacency List
A
F, B, C, G
B
A
C
A, G
D
E, F
E
G, D, F
F
A, E, D
G
A, L, E, H, J, C
H
G, I
I
H
J
G, L, K, M
K
J
The Ladja cen
cGy ,lisJt ,foMr the graph G
M
L, J

B	C	G

J	K
D
E

F	L	M
The Gr aph G

[bookmark: Node][bookmark: Adjacency_List]If the depth first travers al is initiated from vertex A, then the vertices of graph G are visited in the order: A F E D G L J K M H I C B . The depth first spanning tree is shown in the figure given below:

D e p t h f i r s t T r a v e r s a l

If the breadth first travers al is initiated from vertex A, then the vertices of graph G are visited in the order: A F B C G E D L H J M I K . The breadth first spanning tree is shown in the figure given below:A
F
B
C
G
E
D
L
H
J
M
I
K

Br e a d t h f ir st t r a v e r s a l

Exampl e 3:

Traverse the graph shown below in breadth first order, depth first order and construct the breadth first and depth first spanning trees.
1
2
3
4
5
6
7
8

Gr a p h G

Vert e x2
3
1
4
5
1
6
7
2
8
2
8
3
8
3
8
4
5
6
7

1

2

3

4

5

6

7

8

Adj acency list fo r gr aph G

If the depth first is initiated from vertex 1, then the vertices of graph G are visited in the order: 1, 2, 4, 8, 5, 6, 3, 7. The depth first spanning tree is as follows:

1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8

De p t h F ir st S p a n n i n g T r e e

Breadt h first searc h and travers al:

If the breadth first search is initiated from vertex 1, then the vertices of G are visited in the order: 1, 2, 3, 4, 5, 6, 7, 8. The breadth first spanning tree is as follows:

Br e a d t h F ir st S p a n n i n g T r e e

7.7. . General Tree s (m- ary tree):

If in a tree, the outdegr e e of every node is less than or equal to m , the tree is called an m- ary tree. If the outdegre e of every node is exactly equal to m or zero then the tree is called a full or complete m- ary tree. For m = 2, the trees are called binary and full binary trees.

Differences between trees and binary trees:

	TREE
	BINARY TREE

	Each element in a tree can have any number of subtrees.
	Each element in a binary tree has at most two subtrees.

	
The subtrees in a tree are unordered.
	The subtrees of each element in a binary tree are ordered (i.e. we distinguish between left and right subtrees).

Convertin g a m- ary tree (gen e r a l tree) to a binary tree:

There is a one- to- one mapping between general ordered trees and binary trees. So, every tree can be uniquely repres e n t e d by a binary tree. Further m o r e , a forest can also be represe n t e d by a binary tree.

Conversion from general tree to binary can be done in two stages.

· As a first step, we delete all the branches	originating in every node except the left most branch.
· We draw edges	from a node to the node on the right, if any, which is situated at the same level.

· Once this is done then for any particular node, we choose its left and right sons in the following manner:

· The left son is the node, which is immediately below the given node, and the right son is the node to the immediate right of the given node on the same horizontal line. Such a
binary tree will not have a right subtree.

Example 1:

Convert (Encoding m-ary trees as binary trees) the following ordered tree into a binary tree.
1
2
3
4
5
6
7
8
9
1 0	1 1

Solution:

Stage 1 tree using the above mentioned procedure is as follows:
1
2
3
4
5
6
7
8
9
1 0
1 1

Stage 2 tree using the above mentioned procedur e is as follows:

1
2
6
3
7
8
4
5
9
1 0
1 1

Exampl e 2:

Construct a unique binary tree from the given forest.
1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 03

Solution:

Stage 1 tree using the above mentioned procedure is as follows:
1
7
2
3
8
9
1 0
4
5
6
1 1
1 2
1 3

Stage 2 tree using the above mentioned procedure is as follows (binary tree representation of forest):

1
2
7
4
3
8
5	6
1 1
9
9
1 0
1 2
1 3

Searc h and Travers al Techn iq u e s for m- ary tree s:

Search involves visiting nodes in a tree in a systematic manner, and may or may not result into a visit to all nodes. When the search necessarily involved the examination of every vertex in the tree, it is called the traversal. Traversing of a tree can be done in two ways.

1. Depth first search or travers al.
2. Breadth first search or traversal.

Depth first searc h:

In Depth first search, we begin with root as a start state, then some successor of the start state, then some successor of that state, then some successor of that and so on, trying to reach a goal state. One simple way to implement depth first search is to use a stack data structure consisting of root node as a start state.
If depth first search reaches a state S without successors, or if all the successors of a state S have been chosen (visited) and a goal state has not get been found, then it “backs up” that means it goes to the immediately previous state or predec essor formally, the state whose successor was ‘S’ originally.

To illustrat e this let us consider the tree shown below.

ST A RTD
A
E
J
S
B
H
G
C
F
K
I

G O A L

Suppose S is the start and G is the only goal state. Depth first search will

first visit S, then A, then D. But D has no successors, so we must back up to A and try its second successor, E. But this doesn’t have any successors either, so we back up to A again. But now we have tried all the
successors of A and haven’t found the goal state G so we must back to ‘S’. Now ‘S’ has a second successor, B. But B has no successors, so we back up to S again and choose its third successor, C. C has one
successor, F. The first successor of F is H, and the first of H is J. J doesn’t have any successors, so we back up to H and try its second successor.
And that’s G, the only goal state.

So the solution path to the goal is S, C, F, H and G and the states considere d were in order S, A, D, E, B, C, F, H, J, G.

Disadvanta g e s :

1. It works very fine when search graphs are trees or lattices, but can get struck in an infinite loop on graphs. This is becaus e depth first search can travel around a cycle in the graph forever.

To eliminate	this keep	a list of states	previously visited,	and never permit search to return to any of them.

2. We cannot come up with shortest solution to the problem.

Breadt h first searc h:

Breadth-first search starts at root node S and “discovers" which vertices are reachable from S. Breadth-first search discovers vertices in increasing order of distance. Breadth-first search is named because it visits vertices across the entire breadth.

To illustrate this let us consider the following tree:

ST A RTD
A
E
J
S
B
H
G
C
F
K
I

G O A L

Breadth first search finds states level by level. Here we first check all the immediate successors of the start state. Then all the immediate successors of these, then all the immediate successors of these, and so on until we find a goal node. Suppose S is the start state and G is the goal state. In the figure, start state S is at level 0; A, B and C are at level 1; D, e and F at level 2; H and I at level 3; and J, G and K at level 4.

So breadth first search, will consider in order S, A, B, C, D, E, F, H, I, J and G and then stop because it has reached the goal node.

Breadth first search does not have the danger of infinite loops as we consider states in order of increasing number of branches (level) from the start state.

One simple way to implement breadth first search is to use a queue data structur e consisting of just a start state.
[bookmark: _GoBack]
image5.png

image95.png

image96.png

image97.png

image98.png

image99.png

image100.png

image101.png

image102.png

image103.png

image104.png

image6.png

image105.png

image106.png

image107.png

image108.png

image109.png

image110.png

image111.png

image112.png

image113.png

image114.png

image7.png

image115.png

image116.png

image117.png

image118.png

image119.png

image120.png

image121.png

image122.png

image123.png

image124.png

image8.png

image125.png

image126.png

image127.png

image128.png

image129.png

image130.png

image131.png

image132.png

image133.png

image134.png

image9.png

image135.png

image136.png

image137.png

image138.png

image139.png

image140.png

image141.png

image142.png

image143.png

image144.png

image10.png

image145.png

image146.png

image147.png

image148.png

image149.png

image150.png

image151.png

image152.png

image153.png

image154.png

image11.png

image155.png

image156.png

image157.png

image158.png

image159.png

image160.png

image161.png

image162.png

image163.png

image164.png

image12.png

image165.png

image166.png

image167.png

image168.png

image169.png

image170.png

image171.png

image172.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image1.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image2.png

image65.png

image66.png

image67.png

image68.png

image69.png

image70.png

image71.png

image72.png

image73.png

image74.png

image3.png

image75.png

image76.png

image77.png

image78.png

image79.png

image80.png

image81.png

image82.png

image83.png

image84.png

image4.png

image85.png

image86.png

image87.png

image88.png

image89.png

image90.png

image91.png

image92.png

image93.png

image94.png

