

UNIT- 5	GRAPHS
	
Graph G is a pair (V, E), where V is a finite set of vertices and E is a finite set of edges. We will often denote n = |V|, e = |E|.

A graph is generally displayed  as figure 7.5.1, in  which  the  vertices  are repres e n t e d by circles and the edges by lines.

An  edge  with  an  orientation  (i.e.,  arrow   head)  is  a  directed  edge,  while an edge with no orientation is our undirecte d edge.

If   all	the	edges	in	a	graph	are	undirecte d,	then	the	graph	is	an undirecte d graph.  The graph of figures  7.5.1( a)  is  undirecte d  graphs.  If all the edges  are  directed;  then  the  graph  is  a  directed  graph.  The  graph  of figure 7.5. 1( b) is a directed graph. A directed graph is also  called  as digraph.

A graph G is connecte d if and  only  if  there  is  a  simple  path  between  any two nodes in G.

A graph G is said to be complete if every node  a  in  G is  adjacent  to every other node v in G. A  complete graph  with  n  nodes  will  have n(n- 1)/2 edges. For example, Figure 7.5. 1.( a) and figure 7.5. 1.( d) are complete  graphs.

A directed graph G is said to  be  connecte d,  or  strongly  connected,  if  for each pair u, v for  nodes  in  G  there  is  a  path  from  u  to  v  and  there  is  a path from v to  u. On the other hand,  G is said  to  be  unilaterally  connected if for  any  pair  u,  v  of  nodes  in  G  there  is  a  path  from  u  to  v  or a path from v to u. For example, the digraph shown in figure  7.5. 1  (e)  is strongly connected.B
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We can assign weight function to the edges: wG (e) is a weight of edge e  E. The graph which has such function assigned is called weighted graph.

The number of incoming edges to a vertex v is called in–degree of the vertex (denote indeg(v)). The number of outgoing edges from a vertex is called out-degree (denote outdeg(v)). For example, let us consider the digraph shown in figure 7.5.1(f),

indegree(v1) = 2 outdegree(v1) = 1
indegree(v2) = 2 outdegree(v2) = 0

A path is a sequence of vertices (v1, v2,	, vk), where for all i, (vi, vi+1)  E. A path is simple if all
vertices in the path are distinct. If there a path containing one or more edges which starts from a
vertex Vi and terminates into the same vertex then the path is known as a cycle. For example, there is a cycle in figure 7.5.1 (a), figure 7.5.1 (c) and figure 7.5.1 (d).

If a graph (digraph) does not have any cycle then it is called acyclic graph. For example, the graphs of figure 7.5.1 (f) and figure 7.5.1 (g) are acyclic graphs.
A graph G’ = (V’, E’) is a sub-graph of graph G = (V, E) iff V’  V and E’  E.
A Forest is a set of disjoint trees. If we remove the root node of a given tree then it becomes forest. The following figure shows a forest F that consists of three trees T1, T2 and T3.









A F or e s t F
A graph that has either self loop or parallel edges or both is called multi-graph.

Tree is a connected acyclic graph (there aren’t any sequences of edges that go around in a loop). A spanning tree of a graph G = (V, E) is a tree that contains all vertices of V and is a subgraph of G. A single graph can have multiple spanning trees.

Let T be a spanning tree of a graph G. Then

1. Any two vertices in T are connected by a unique simple path.
2. If any edge is removed from T, then T becomes disconnected.
3. If we add any edge into T, then the new graph will contain a cycle.
4. Number of edges in T is n-1.


Representation of Graphs:

There are two ways of representing digraphs. They are:
· Adjacency matrix.
· Adjacency List.
· Incidence matrix.


Adjacency matrix:

In this representation, the adjacency matrix of a graph G is a two dimensional n x n matrix, say A = (ai,j), where


a	  1

if there

is an edge

from
i 
i to v j

i , j0


· 
otherwise

The matrix is symmetric in case of undirected graph, while it may be asymmetric if the graph is directed. This matrix is also called as Boolean matrix or bit matrix.A
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Figure 7.5.2(b) shows the adjacency matrix representation of the graph G1 shown in figure 7.5.2(a). The adjacency matrix is also useful to store multigraph as well as weighted graph. In case of

multigraph representation, instead of entry 0 or 1, the entry will be between number of edges between two vertices.

[image: ]In case of weighted graph, the entries are weights of the edges between the vertices. The adjacency matrix for a weighted graph is called as cost adjacency matrix. Figure 7.5.3(b) shows the cost adjacency matrix representation of the graph G2 shown in figure 7.5.3(a).
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Adjace n cy List :

In  this  repres en t a t ion,   the   n   rows   of   the   adjacency   matrix   are repres e n t e d as n linked lists. An  array   Adj[1,  2,  .  .  .  .  .  n]  of  pointers where for 1 < v < n, Adj[v] points  to a linked list containing the vertices which are adjacent to v (i.e. the vertices that  can be reached  from  v  by  a single edge). If the edges have weights then these  weights  may  also  be  stored in the linked list elements. For the graph G in figure 7.5.2 (a), the adjacency list in shown in figure 7.5.4 (b).
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Incidence Matrix:

In this representation, if G is a graph with n vertices, e edges and no self loops, then incidence matrix A is defined as an n by e matrix, say A = (ai,j), where


a	  1

if there

is an

edge
j 
incident

to v i

i , j0


· 
otherwise


Here, n rows correspond to n vertices and e columns correspond to e edges. Such a matrix is called as vertex-edge incidence matrix or simply incidence matrix.
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Figure 7.5.4(b) shows the incidence matrix representation of the graph G1 shown in figure 7.5.4(a).


7.6. Minimum Spanning Tree (MST):

A spanning tree for a connected graph is a tree whose vertex set is the same as the vertex set of the given graph, and whose edge set is a subset of the edge set of the given graph. i.e., any connected graph will have a spanning tree.

Weight of a spanning tree w(T) is the sum of weights of all edges in T. Minimum spanning tree (MST) is a spanning tree with the smallest possible weight.

Example:










T h r e e ( o f m a n y p o s s i b l e ) s p a n n i n g t r e e s f r o m g r a p h G:
A g r a p h G:
G:


1
3
2
1
6
5
G: 3
4
2

A  w e i g h t e d  g r a p h  G:	T h e m i n i m a l s p a n n i n g t r e e f r o m w e i g h t e d g r a p h G:

Let's consider a couple of real-world examples on minimum spanning tree:

· One practical application of a MST would be in the design of a network. For instance, a group of individuals, who are separated by varying distances, wish to be connected together in a telephone network. Although MST cannot do anything about the distance
from one connection to another, it can be used to determine the least cost paths with no cycles in this network, thereby connecting everyone at a minimum cost.

· Another useful application of MST would be finding airline routes. The vertices of the graph would represent cities, and the edges would represent routes between the cities. MST can be applied to optimize airline routes by finding the least costly paths with no
cycles.

Minimum spanning tree, can be constructed using any of the following two algorithms:

1. Kruskal’s algorithm and
2. Prim algorithm.

Both algorithms differ in their methodology, but both eventually end up with the MST. Kruskal's algorithm uses edges, and Prim’s algorithm uses vertex connections in determining the MST.


7.6.1. [bookmark: 7.6.1._Kruskal’s_Algorithm]Kruskal’s Algorithm

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e. picking an edge with the least weight in a MST).

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the shortest (least cost) edge, while avoiding the creation of cycles, until (n - 1) edges have been added.
Sometimes two or more edges may have the same cost.

The order in which the edges are chosen, in this case, does not matter. Different MST’s may result, but they will all have the same total cost, which will always be the minimum cost.

Kruskal’s Algorithm for minimal spanning tree is as follows:

1. Make the tree T empty.
2. Repeat the steps 3, 4  and  5  as  long  as  T  contains  less  than  n  -  1  edges and E is not empty otherwise, proceed to step 6.
3. Choose an edge (v, w) from E of lowest cost.
4. Delete (v, w) from E.
5. If (v, w) does not create a cycle in T
then Add (v, w) to T
else discard (v, w)
6. If T contains fewer than n - 1 edges then print no spanning tree.


Exampl e 1:

Construct the minimal spanning tree for the graph shown below:
1
10
45
2
50
40
30
35
3
4
25
55
5
20
6
15

Arrange all the edges in the increasing order of their costs:

	Cost
	10
	15
	20
	25
	30
	35
	40
	45
	50
	55

	Edge
	(1, 2)
	(3, 6)
	(4, 6)
	(2, 6)
	(1, 4)
	(3, 5)
	(2, 5)
	(1, 5)
	(2, 3)
	(5, 6)



The stages in Kruskal’s algorithm for minimal spanning tree is as follows:

	Edge
	Cost
	Stag e s
	in
	Kruskal’ s
	algorit h m
	Remark s

	
(1, 2)
	
10
	

1
	
	

2
	
	


3
	
The edge between vertices 1 and  2  is  the first edge selected. It is included in the spanning tree.

	
	
	4
	
	
	
	
	

	
	
	
	
	
	5
	
	

	
	
	
	6
	
	
	
	

	
(3, 6)
	
15
	

1
	
	

2
	
	


3
	
Next,  the  edge  betwee n  vertices  3  and  6 is selected and included in the tree.

	
	
	4
	
	
	
	
	

	
	
	
	
	
	5
	
	

	
	
	
	6
	
	
	
	

	
(4, 6)
	
20
	

1
	
	

2
	
	


3
	
The edge between vertices next included in the tree.
	
4
	
and
	
6
	
is

	
	
	4
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	5
	
	
	
	
	
	

	
	
	
	6
	
	
	
	
	
	
	
	

	
(2, 6)
	
25
	

1
	
	

2
	
	


3
	
The edge between vertices 2 and 6 is considere d next and included in the tree.

	
	
	4
	
	
	
	
	

	
	
	
	
	
	5
	
	

	
	
	
	6
	
	
	
	

	
(1, 4)
	
30
	
Reject
	
The edge between the vertices 1 and 4 is discarded as its inclusion creates a cycle.

	
(3, 5)
	
35
	

1
	
	

2
	
	


3
	
Finally, the edge between vertices 3 and
5 is considere d and included in the tree built. This completes the tree.

	
	
	4
	
	
	5
	
	The cost of the minimal spanning tree is

	
	
	
	6
	
	
	
	105 .


[image: ][image: ][image: ][image: ][image: ][image: ][image: ]Exampl e 2:

Construct the minimal spanning tree for the graph shown below:
1	2 8
1 0
2
1 4
6
1 6
7
2 5
2 4
3
5	1 8
1 2
2 2
4


Soluti o n:

[image: ][image: ][image: ][image: ][image: ][image: ]Arrange all the edges in the increasing order of their costs:

	Cost
	10
	12
	14
	16
	18
	22
	24
	25
	28

	Edge
	(1, 6)
	(3, 4)
	(2, 7)
	(2, 3)
	(4, 7)
	(4, 5)
	(5, 7)
	(5, 6)
	(1, 2)



[image: ][image: ][image: ][image: ]The stages in Kruskal’s algorithm for minimal spanning tree is as follows:

	Edge
	Cost
	Stag e s in Kruskal’ s algorit h m
	Remark s

	
(1, 6)
	
10
	
1
2

6
3
7

5
4
	
The edge between vertices 1 and  6  is  the first edge selected. It is included in the spanning tree.

	
(3, 4)
	
12
	
1
2

6
3
7

5
4
	
Next,  the  edge  betwee n  vertices  3  and  4 is selected and included in the tree.

	
(2, 7)
	
14
	
1
2

6
3
7

5
4
	
The  edge  between  vertices  2  and  7   is next included in the tree.

	
(2, 3)
	
16
	
1
2

6
3
7

5
4
	
The  edge  between  vertices  2  and  3   is next included in the tree.

	
(4, 7)
	
18
	
Reject
	
The edge between the vertices 4 and 7 is discarded as its inclusion creates a cycle.

	
(4, 5)
	
22
	
1
2

6
3
7

5
4
	
The edge between vertices 4 and 7 is considere d next and included in the tree.

	
(5, 7)
	
24
	
Reject
	
The edge between the vertices 5 and 7 is discarded as its inclusion creates a cycle.



	
(5, 6)
	
25
	
	
	
1
	
	
	
	
	
Finally, the edge between vertices 5 and 6 is

	
	
	
	
	
	
	2
	
	
	considered and included in the tree built. This
completes the tree.

	
	
	6
	
	
	
	
	
	
	

	
	
	
	
	
	7
	
	
	3
	The cost of the minimal spanning tree is

	
	
	
	
5
	
	
	
	
	
	99 .

	
	
	
	
	
	
	
	4
	
	




7.6.2. [image: ]2 .	Reach a b i l i ty Matrix  (Warshall’s Algorithm) :

Warshall’s algorithm  requires  to  know  which  edges  exist  and  which  do  not. It doesn’ t need to  know  the  lengths  of  the  edges  in  the  given directed graph. This information is conveniently displayed by adjacency matrix  for  the  graph,  in  which  a  ‘1’  indicates  the  existence  of  an  edge and ‘0’ indicates non- existence.


A d j a c e n c y M a t r i x

W a r s h a l l’ s A l g o r it h m
A l l Pa ir s Rec h a b i l it y M a t r i x



It begins with the adjacency matrix for the given  graph,  which is called A0, and then updates  the  matrix  ‘n’  times,  producing  matrices called A 1, A2, . . . . . , An and then stops.

In warshall’s algorithm  the  matrix  Ai  merely  contains  information  about the existence of i – paths. A 1 entry in the matrix Ai will correspond to the existence of an i – paths  and  O  entry  will  correspond to non- existence. Thus when the algorithm  stops,  the  final  matrix,  the  matrix  An,  contains  the desired connectivity information.

A 1 entry indicates a pair of vertices, which are connected, and O entry indicates a pair, which  are  not.  This  matrix  is  called  a  reachability  matrix or path matrix for the graph. It is also called the transitive closure  of the original adjacency matrix.

The update rule for computing Ai from Ai-1 in warshall’s algorithm is:

Ai [x,  y]  =  Ai-1 [x,  y] ۷ (Ai-1 [x,  i] ٨ Ai-1 [i, y])	----	(1)



Exampl e 1:

Use warshall’s algorithm to  calculate the  reachability  matrix  for  the graph:

4
1	4
5	6
7	1 1

1
2	3
7
We begin with the adjacency matrix of the graph ‘A0’


1  0	1

2  0	0A 

0	3  0	0


1	0 

1	1 
0	0 


4  1	1	1	0 

The first step is to compute ‘A1’ matrix.  To  do  so  we  will use  the  updating rule – (1).

Before doing so we  notice  that  only  1  entry  in  A0  must  remain  1  in  A1,  since in Boolean algebra 1 + (any thing) = 1.  Since  these  are  only  nine  0 entries in A0, there are only nine entries in A0 that need to be updated.

	A1[1,
	1]
	=
	A0[1,
	1]
	۷ (A0[1,
	1]
	٨ A0[1,
	1])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A1[2,
	1]
	=
	A0[2,
	1]
	۷ (A0[2,
	1]
	٨ A0[1,
	1])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A1[2,
	2]
	=
	A0[2,
	2]
	۷ (A0[2,
	1]
	٨ A0[1,
	2])
	=
	0
	۷
	(0
	٨ 1)
	=
	0

	A1[3,
	1]
	=
	A0[3,
	1]
	۷ (A0[3,
	1]
	٨ A0[1,
	1])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A1[3,
	2]
	=
	A0[3,
	2]
	۷ (A0[3,
	1]
	٨ A0[1,
	2])
	=
	0
	۷
	(0
	٨ 1)
	=
	0

	A1[3,
	3]
	=
	A0[3,
	3]
	۷ (A0[3,
	1]
	٨ A0[1,
	3])
	=
	0
	۷
	(0
	٨ 1)
	=
	0

	A1[3,
	4]
	=
	A0[3,
	4]
	۷ (A0[3,
	1]
	٨ A0[1,
	4])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A1[4,
	4]
	=
	A0[4,
	4]
	۷ (A0[4,
	1]
	٨ A0[1,
	4])
	=
	0
	۷
	(1
	٨ 0)
	=
	0



1  0	1	1	0 
□	
2  0	0	1	1 A 

1	3  0	0	0	0 
□	
4  1	1	1	0 

Next, A2 must be calculated from A1; but again we  need  to  update the 0 entries,

	A2[1,
	1]
	=
	A1[1,
	1]
	۷ (A1[1,
	2]
	٨ A1[2,
	1])
	=
	0
	۷
	(1
	٨ 0)
	=
	0

	A2[1,
	4]
	=
	A1[1,
	4]
	۷ (A1[1,
	2]
	٨ A1[2,
	4])
	=
	0
	۷
	(1
	٨ 1)
	=
	1

	A2[2,
	1]
	=
	A1[2,
	1]
	۷ (A1[2,
	2]
	٨ A1[2,
	1])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A2[2,
	2]
	=
	A1[2,
	2]
	۷ (A1[2,
	2]
	٨ A1[2,
	2])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A2[3,
	1]
	=
	A1[3,
	1]
	۷ (A1[3,
	2]
	٨ A1[2,
	1])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A2[3,
	2]
	=
	A1[3,
	2]
	۷ (A1[3,
	2]
	٨ A1[2,
	2])
	=
	0
	۷
	(0
	٨ 0)
	=
	0



	A2[3,
	3]
	=
	A1[3,
	3]
	۷ (A1[3,
	2]
	٨ A1[2,
	3])
	=
	0
	۷
	(0
	٨ 1)
	=
	0

	A2[3,
	4]
	=
	A1[3,
	4]
	۷ (A1[3,
	2]
	٨ A1[2,
	4])
	=
	0
	۷
	(0
	٨ 1)
	=
	0

	A2[4,
	4]
	=
	A1[4,
	4]
	۷ (A1[4,
	2]
	٨ A1[2,
	4])
	=
	0
	۷
	(1
	٨ 1)
	=
	1




1  0	1

2  0	0A 

2	3  0	0


1	1 

1	1 
0	0 


4  1	1	1	1 

This matrix has only seven 0 entries, and  so to  compute  A3, we  need  to  do only seven computations.

	A3[1,
	1]
	=
	A2[1,
	1]
	۷ (A2[1,
	3]
	٨ A2[3,
	1])
	=
	0
	۷
	(1
	٨ 0)
	=
	0

	A3[2,
	1]
	=
	A2[2,
	1]
	۷ (A2[2,
	3]
	٨ A2[3,
	1])
	=
	0
	۷
	(1
	٨ 0)
	=
	0

	A3[2,
	2]
	=
	A2[2,
	2]
	۷ (A2[2,
	3]
	٨ A2[3,
	2])
	=
	0
	۷
	(1
	٨ 0)
	=
	0

	A3[3,
	1]
	=
	A2[3,
	1]
	۷ (A2[3,
	3]
	٨ A2[3,
	1])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A3[3,
	2]
	=
	A2[3,
	2]
	۷ (A2[3,
	3]
	٨ A2[3,
	2])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A3[3,
	3]
	=
	A2[3,
	3]
	۷ (A2[3,
	3]
	٨ A2[3,
	3])
	=
	0
	۷
	(0
	٨ 0)
	=
	0

	A3[3,
	4]
	=
	A2[3,
	4]
	۷ (A2[3,
	3]
	٨ A2[3,
	4])
	=
	0
	۷
	(0
	٨ 0)
	=
	0



1  0	1	1	1 
□	
2  0	0	1	1 A 

3	3  0	0	0	0 
□	
4  1	1	1	1 

Once A3 is calculated,  we use  the  update rule to calculate A4 and stop. This matrix is the reachability matrix for the graph.

	A4[1,
	1]
	=
	A3 [1,
	1]
	۷ (A3 [1,
	4]
	٨ A3 [4,
	1])
	=
	0
	۷ (1
	٨ 1)
	=
	0
	۷ 1
	=
	1

	A4[2,
	1]
	=
	A3 [2,
	1]
	۷ (A3 [2,
	4]
	٨ A3 [4,
	1])
	=
	0
	۷ (1
	٨ 1)
	=
	0
	۷ 1
	=
	1

	A4[2,
	2]
	=
	A3 [2,
	2]
	۷ (A3 [2,
	4]
	٨ A3 [4,
	2])
	=
	0
	۷ (1
	٨ 1)
	=
	0
	۷ 1
	=
	1

	A4[3,
	1]
	=
	A3 [3,
	1]
	۷ (A3 [3,
	4]
	٨ A3 [4,
	1])
	=
	0
	۷ (0
	٨ 1)
	=
	0
	۷ 0
	=
	0

	A4[3,
	2]
	=
	A3 [3,
	2]
	۷ (A3 [3,
	4]
	٨ A3 [4,
	2])
	=
	0
	۷ (0
	٨ 1)
	=
	0
	۷ 0
	=
	0

	A4[3,
	3]
	=
	A3 [3,
	3]
	۷ (A3 [3,
	4]
	٨ A3 [4,
	3])
	=
	0
	۷ (0
	٨ 1)
	=
	0
	۷ 0
	=
	0

	A4[3,
	4]
	=
	A3 [3,
	4]
	۷ (A3 [3,
	4]
	٨ A3 [4,
	4])
	=
	0
	۷ (0
	٨ 1)
	=
	0
	۷ 0
	=
	0



1  1	1	1	1 
□	
2  1	1	1	1 A 

4	3  0	0	0	0 
□	
4  1	1	1	1 

Note that according to the algorithm vertex 3 is not reachable from itself
1.   This is  because	as   can   be   seen   in  the graph,  there	is no path from vertex 3 back to itself.


7.6.3. 3 .	Traversin g a Graph:

Many graph algorithms require one to systematically examine the nodes and edges of a graph G. There are two standard ways to do this. They are:
· Breadth first traversal (BFT)
· Depth first traversal (DFT)
The BFT will use a queue as an auxiliary structure to hold nodes for future processing and the DFT will use a STACK.

During the execution  of these algorithms, each node  N  of G will be  in  one  of three states, called the status of N, as follows:

1. STATUS = 1 (Ready state): The initial state of the node N.

2. STATUS	=	2  (Waiting	state):	The  node	N   is  on  the	QUEUE	or STACK, waiting to be processed.

3. STATUS = 3 (Process ed state): The node N has been processed.

Both BFS and DFS impose a tree (the BFS/DFS tree)  on  the  structur e  of  graph.   So,   we can  compute	a spanning tree in a graph. The computed spanning	tree		is   not		a   minimum	spanning	tree.	The	spanning		trees obtained using depth first searches  are  called  depth  first  spanning  trees.  The	spanning	trees	obtained	using		breadt h		first	searches	are	called Breadth first spanning trees.


Breadt h first searc h and travers al:

The general idea behind a breadth  first  travers al  beginning  at  a  starting node A is as follows. First we examine the  starting  node  A.  Then  we examine all the neighbors of A. Then we examine all the  neighbors  of  neighbors of A. And so on.  We  need  to  keep  track of the  neighbors  of  a node, and  we  need  to  guarant e e  that  no node is process ed more  than once. This is accomplished  by  using a QUEUE to hold nodes that are waiting to be process ed, and by using a field  STATUS  that  tells us the  current status of any node. The  spanning  trees  obtained  using BFS are called Breadth first spanning trees.

Breadth first traversal algorithm on graph G is as follows:

This algorithm executes a BFT on graph G beginning at a starting node A.

1. Initialize all nodes to the ready state (STATUS = 1).

2. Put  the  starting	node	A  in   QUEUE  and  change	its  status	to the waiting state (STATUS = 2).

3. Repeat the following steps until QUEUE is empty:

a. Remove the front node N of QUEUE.  Process  N and change the status of N to the processed state (STATUS = 3).

b. Add to the  rear  of  QUEUE  all  the  neighbors  of  N  that  are  in the ready state (STATUS = 1), and change their status to  the waiting state (STATUS = 2).

4. Exit.


Depth first searc h and traversal:

Depth first search of undirecte d graph  proceeds  as  follows:  First  we  examine the starting  node V. Next an unvisited  vertex  'W'  adjacent  to 'V' is selected and a depth first search from 'W' is initiated. When a vertex 'U' is reached  such  that all its adjacent vertices  have  been  visited,  we back up to the last vertex visited, which has an unvisited  vertex 'W' adjacent to it and initiate a depth  first  search from W.  The  search  terminate s when no unvisited vertex can  be  reache d  from  any  of  the visited ones.

This algorithm is similar to the inorder  travers al of binary  tree.  DFT  algorithm is similar to  BFT  except  now  use   a  STACK  instead  of  the QUEUE. Again field STATUS  is  used  to  tell  us  the  current  status  of  a  node.

The algorithm for depth first traversal on a graph G is as follows.

This algorithm executes a DFT on graph G beginning at a starting node A.

1. Initialize all nodes to the ready state (STATUS = 1).

2. Push the starting node A into STACK and change its status  to  the  waiting state (STATUS = 2).

3. Repeat the following steps until STACK is empty:

a. Pop the top node N from STACK. Process  N  and  change  the  status of N to the processe d state (STATUS = 3).

b. Push all the neighbors  of  N  that  are  in  the  ready   state (STATUS = 1), and change their status to the waiting state (STATUS = 2).
4. Exit.

Example 1:

Consider the graph shown below. Traverse the graph shown below in breadth first order and depth first order.


A
F
C
B
D
E
G
J
K


A Gr a p h GNod
e
Adjacen c y
List
A
F, C, B
B
A, C, G
C
A, B, D, E, F,
G
D
C, F, E, J
E
C, D, G, J, K
F
A, C, D
G
B, C, E, K
J
D, E, K
K Adjacen
cEy  ,lisGt  f,orJgra ph   G






Breadt h - first searc h and travers al:

The steps involved in breadth first traversal are as follows:

	Curre nt
Node
	
QUEUE
	Processed Nodes
	Status

	
	
	
	A
	B
	C
	D
	E
	F
	G
	J
	K

	
	
	
	1
	1
	1
	1
	1
	1
	1
	1
	1

	
	A
	
	2
	1
	1
	1
	1
	1
	1
	1
	1

	A
	F C B
	A
	3
	2
	2
	1
	1
	2
	1
	1
	1

	F
	C B D
	A F
	3
	2
	2
	2
	1
	3
	1
	1
	1

	C
	B D E
G
	A F C
	3
	2
	3
	2
	2
	3
	2
	1
	1

	B
	D E G
	A F C B
	3
	3
	3
	2
	2
	3
	2
	1
	1

	D
	E G J
	A F C B D
	3
	3
	3
	3
	2
	3
	2
	2
	1

	E
	G J K
	A F C B D E
	3
	3
	3
	3
	3
	3
	2
	2
	2

	G
	J K
	A F C B D E G
	3
	3
	3
	3
	3
	3
	3
	2
	2

	J
	K
	A F C B D E G J
	3
	3
	3
	3
	3
	3
	3
	3
	2

	K
	EMPTY
	A F C B D E G J
K
	3
	3
	3
	3
	3
	3
	3
	3
	3



For the above graph the Breadth first traversal sequence is: A F C B D E G J K.


Depth-first search and traversal:

The steps involved in depth first traversal are as follows:

	Curre nt
Node
	
Stack
	Processed Nodes
	Status

	
	
	
	A
	B
	C
	D
	E
	F
	G
	J
	K

	
	
	
	1
	1
	1
	1
	1
	1
	1
	1
	1

	
	A
	
	2
	1
	1
	1
	1
	1
	1
	1
	1

	A
	B C F
	A
	3
	2
	2
	1
	1
	2
	1
	1
	1

	F
	B C D
	A F
	3
	2
	2
	2
	1
	3
	1
	1
	1



	D
	B C E J
	A F D
	3
	2
	2
	3
	2
	3
	1
	2
	1

	J
	B	C	E
K
	A F D J
	3
	2
	2
	3
	2
	3
	1
	3
	2

	K
	B	C	E
G
	A F D J K
	3
	2
	2
	3
	2
	3
	2
	3
	3

	G
	B C E
	A F D J K G
	3
	2
	2
	3
	2
	3
	3
	3
	3

	E
	B C
	A F D J K G E
	3
	2
	2
	3
	3
	3
	3
	3
	3

	C
	B
	A F D J K G E C
	3
	2
	3
	3
	3
	3
	3
	3
	3

	B
	EMPTY
	A F D J K G E C
B
	3
	3
	3
	3
	3
	3
	3
	3
	3


A
F
B
E
G
D
L
H
C
J
I
K
M

For the above graph the Depth first traversal sequence is: A F D J K G E C B.


Exampl e 2:

Traverse the graph shown below in breadth first order, depth first order and construct the breadth first and depth first spanning trees.

[image: ]A	H	INode
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A
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B
A
C
A, G
D
E, F
E
G, D, F
F
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H
G, I
I
H
J
G, L, K, M
K
J
The Ladja cen
cGy  ,lisJt ,foMr  the  graph   G
M
L, J
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J	K
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E
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[bookmark: Node][bookmark: Adjacency_List]If the depth first travers al is initiated from vertex  A,  then  the vertices of graph G are visited in the order:  A  F  E  D  G  L  J K  M  H  I  C  B .  The  depth first spanning tree is shown in the figure given below:

D e p t h  f i r s t  T r a v e r s a l

If  the  breadth  first  travers al  is  initiated  from  vertex  A,  then  the vertices of graph G are visited in the order:  A  F  B  C  G  E  D  L  H  J  M  I  K .  The breadth first spanning tree is shown in the figure given below:A
F
B
C
G
E
D
L
H
J
M
I
K


Br e a d t h  f ir st  t r a v e r s a l


Exampl e 3:

Traverse the graph shown below in breadth first order, depth first order and construct the breadth first and depth first spanning trees.
1
2
3
4
5
6
7
8

Gr a p h G

Vert e x2
3
1
4
5
1
6
7
2
8
2
8
3
8
3
8
4
5
6
7


1

2

3

4

5

6

7

8

Adj acency list fo r  gr aph G


If the depth  first  is  initiated  from  vertex  1,  then  the vertices of graph G are visited in the  order:  1,  2,  4,  8,  5,  6,  3,  7.  The  depth  first  spanning  tree is as follows:

1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8

De p t h  F ir st  S p a n n i n g  T r e e


Breadt h first searc h and travers al:

If  the  breadth  first  search  is initiated   from  vertex  1,  then  the vertices of G are visited in the order: 1, 2,  3,  4,  5,  6,  7,  8.  The  breadth  first  spanning tree is as follows:












Br e a d t h  F ir st  S p a n n i n g  T r e e









7.7. . General Tree s ( m- ary tree):

If in a tree, the  outdegr e e  of  every  node is less  than  or equal to m , the tree is called an m- ary  tree.  If  the  outdegre e  of  every  node  is  exactly  equal to m or  zero  then  the tree is  called a full or  complete  m- ary  tree.  For m = 2, the trees are called binary and full binary trees.

Differences between trees and binary trees:

	TREE
	BINARY TREE

	Each element in a tree can have any number of subtrees.
	Each element in a binary tree has at most two subtrees.

	
The subtrees in a tree are unordered.
	The subtrees of each element in a binary tree are ordered (i.e. we distinguish between left and right subtrees).



Convertin g a m- ary tree (gen e r a l tree) to a binary tree:

There is a one- to- one mapping between general ordered trees and binary trees. So, every  tree  can  be  uniquely  repres e n t e d  by  a  binary  tree. Further m o r e , a forest can also be represe n t e d by a binary tree.

Conversion from general tree to binary can be done in two stages.

· As  a   first   step, we  delete  all the  branches	originating in every node except the left most branch.
· We  draw  edges	from a node to the node  on  the  right,  if  any,  which is situated at the same level.

· Once this is done then for any  particular  node, we  choose  its  left and right sons in the following manner:

· The left son is  the  node,  which  is  immediately  below  the given node, and the right son is  the  node  to  the  immediate  right of the given node on the same horizontal line. Such a
binary tree will not have a right subtree.

Example 1:

Convert (Encoding m-ary trees as binary trees) the following ordered tree into a binary tree.
1
2
3
4
5
6
7
8
9
1 0	1 1








Solution:

Stage 1 tree using the above mentioned procedure is as follows:
1
2
3
4
5
6
7
8
9
1 0
1 1




Stage 2 tree using the above mentioned procedur e is as follows:

1
2
6
3
7
8
4
5
9
1 0
1 1


Exampl e 2:

Construct a unique binary tree from the given forest.
1
2
3
4
5
6
7
8
9
1 0
1 1
1 2
1 03


Solution:

Stage 1 tree using the above mentioned procedure is as follows:
1
7
2
3
8
9
1 0
4
5
6
1 1
1 2
1 3



Stage 2 tree using the above mentioned procedure is as follows (binary tree representation of forest):

1
2
7
4
3
8
5	6
1 1
9
9
1 0
1 2
1 3



Searc h and Travers al Techn iq u e s for m- ary tree s:

Search involves visiting nodes in a tree in a systematic manner, and may or may not result into a visit to all nodes. When the search necessarily involved the examination of every vertex in the tree, it is called the traversal. Traversing of a tree can be done in two ways.

1. Depth first search or travers al.
2. Breadth first search or traversal.

Depth first searc h:

In Depth first search, we begin with root  as  a  start  state,  then  some successor of the start state, then some successor of that state, then some successor of that  and so on, trying to reach a goal state. One simple way to  implement  depth  first  search  is  to   use  a  stack  data  structure  consisting of root node as a start state.
If depth first search reaches a state S without successors, or if all the  successors of a state S have been chosen  (visited)  and  a  goal  state  has  not get been found, then it “backs  up”  that  means  it  goes  to   the  immediately previous state or  predec essor formally, the state whose successor was ‘S’ originally.

To illustrat e this let us consider the tree shown below.






ST A RTD
A
E
J
S
B
H
G
C
F
K
I


G O A L




Suppose S is the start and G is the only goal state. Depth first search will

first visit S, then  A, then D. But D has no successors, so we must  back  up to A and try its second successor, E. But this doesn’t have any  successors either, so we back up to A again. But now we have tried all the
successors of A and haven’t found the goal state G so we must back to ‘S’. Now ‘S’ has a second successor, B. But B has no  successors,  so  we  back up to S again and choose its third successor, C. C has one
successor, F. The first successor of F is H,  and  the  first  of H  is  J. J doesn’t have any successors, so we back up to H and try its second successor.
And that’s G, the only goal state.

So the solution path to the goal  is  S,  C,  F,  H  and  G  and  the  states considere d were in order S, A, D, E, B, C, F, H, J, G.

Disadvanta g e s :

1. It works very fine when search  graphs are trees or lattices, but  can get struck in  an  infinite  loop  on   graphs.  This  is  becaus e depth first  search can  travel  around a cycle  in  the  graph forever.

To  eliminate	this  keep	a   list  of  states	previously  visited,	and never permit search to return to any of them.

2. We cannot come up with shortest solution to the problem.


Breadt h first searc h:

Breadth-first search starts at root node S and “discovers" which vertices are reachable from S. Breadth-first search discovers vertices in increasing order of distance. Breadth-first search is named because it visits vertices across the entire breadth.

To illustrate this let us consider the following tree:






ST A RTD
A
E
J
S
B
H
G
C
F
K
I


G O A L




Breadth first search finds states level by level. Here we first check all the immediate successors  of  the  start  state.  Then  all  the  immediate  successors of  these,  then all the immediate successors  of  these,  and  so  on until we  find  a  goal  node.  Suppose S is the start state  and  G  is  the  goal state. In the figure, start state S is at level 0; A, B and C are at level 1; D, e and F at level 2; H and I at level 3; and J, G and K at level 4.

So breadth first search, will consider  in  order  S,  A,  B,  C,  D,  E,  F,  H,  I,  J  and G and then stop because it has reached the goal node.

Breadth first search does not have the danger of infinite loops  as  we consider  states  in  order  of  increasing  number  of branches  (level)  from  the start state.

One simple way to implement breadth first search is to use a queue  data  structur e consisting of just a start state.
[bookmark: _GoBack]
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