LECTURE NOTES ON

ADVANCED JAVA AND WEB TECHNOLOGIES (VI8CST27)

VII Semester
COMPUTER SCIENCE AND ENGINEERING

SRI VASAVI COLLEGE OF ENGINEERING AND TECHNOLOGY (A) PEDATADEPALLI
UNIT-IV: Fundamentals of NODE JS and Angular: Understanding Node.js, Installing Node.js, Working with Node Packages, Creating a Node.js Application, Understanding Angular, Modules, Directives, Data Binding, Dependency Injection, Services, Separation of Responsibilities, Creating a Basic Angular Application.

1) What is NODE JS?

Node.js is an open-source, cross-platform runtime environment, library, and development framework used to create server-side and networking JavaScript applications. It also provides developers with a vast library of JavaScript modules that simplify coding.

Node.js offers developers the following benefits:

1. It’s open-source

2. It’s scalable. Developers can use it either for horizontal scaling or vertical scaling

3. It supports out of the box unit testing. Developers can use any JavaScript unit testing framework to test their Node.js code
4. It features built-in application programming interfaces (API) that helps developers create different types of servers
5. It is a high-performance tool, thanks to incorporating non-blocking I/O operations. It employs the JavaScript V8 engine to execute code, increasing its speed
6. It supports scripting languages like Ruby, CoffeeScript, and TypeScript

7. It enables rapid development suitable for applications that require frequent changes

What is AngularJS? What Are Its Advantages?

AngularJS is an open-source structural framework developed and maintained by Google. It lets developers use HTML as a template language, and is used to create dynamic, single-page client-side web applications.

AngularJS gives developers the following advantages:

1. It’s open-source

2. It’s easy to use, thanks to decoupling Document Object Models (DOM) manipulation from application logic
3. It provides built-in features like filters, directives, and automatic data binding

4. It provides a smooth, dynamic Model View Control Architecture, making it easier for developers to create client-side web applications
5. It uses the Plain Old JavaScript Objects (POJO) data model, producing spontaneous and clean code, ideal for interactive, user-friendly web-based apps
6. It supports object-oriented, functional, and event-driven programming paradigms

7. It makes unit testing easy, thanks to its built-in test runner (Karma)

Node JS Installation

Goto the URL : https://nodejs.org/en/download/

Choose the windows platform based on ur Laptop or PC Operating System and then click on that installer
In my Pc I am using windows as operating system and my working bit is 64-bit.
Download windows installer 64 bit file

[image:]

Double click on that installer and try to install the Node.Js Installer Platform
Installation will be completed

Differences in Tabular Manner

	
	AngularJS
	Node.JS

	

Core Architecture
	
Developed by Google as a framework for web application development, written entirely in JavaScript, and following JavaScript syntax rules.
	
Developed as a cross-platform runtime environment based on Google's V8 JavaScript engine, and written in several programming languages, specifically JavaScript, C, and C++.

	

Web Framework
	
AngularJS is a web framework. The framework automates everyday development tasks, freeing up the developers to perform other tasks.
	
Node.js is not a web framework, but programmers have their choice of several different Node.js-based frameworks, including Socket.io, Hapi.js, Meteor.js, Express.js, and Sails.js.

	

Programming Language and Paradigm Support
	
AngularJS supports CoffeeScript, Typescript, and Dart.

It supports object- oriented, functional, and event-driven
	
Node.js supports Ruby, CoffeeScript, and Typescript.

It supports object-oriented, functional, event-driven, concurrency-oriented, and sub/pub programming

	
	programming paradigms.
	paradigms.

	

Installation
	
Programmers and developers need not install AngularJS on their systems. Instead, they need only embed AngularJS files in the code base, like any other JavaScript file.
	
While developers can write Node.js applications in JavaScript, those applications need a runtime environment such as Windows, Linux, or macOS. Developers must therefore install Node.js on their system while creating the development environment.

	

Usage Cases
	
Best for creating highly active and interactive web applications. Ideal for client-side and single- page web applications.
	
Best for developing smaller projects. Suitable for building fast, scalable, server-side, and networking applications.
Suitable for video streaming sites and I/O intensive web apps.

	
Definition
	
AngularJS is a client-side framework.
	
Node.js is a cross-platform runtime environment.

	

Data Interaction
	
AngularJS supports two- way data binding but cannot support database query writing features.
	

Node.js allows JavaScript- generated database queries.

	
Important
	
· Supports MVC architectural
	
· Supports MVC architectural pattern

	Features
	
pattern.Use HTML as a template language
· Offers data binding, scope, directives, filters, , routing, deep linking, and dependency injection
	
· Employs API and single- threaded event mechanism (web requests are processed and run on the same thread)
· Web applications can deliver data without buffering.

Working with Node Js Package

One of the most powerful features of the Node.js framework is the ability to easily extend it with additional Node Packaged Modules (NPMs) using the Node Package Manager (NPM). NPM is mainly used for referring Node Packaged Modules as modules to make it easier to follow.

A Node Packaged Module is a packaged library that can easily be shared, reused, and installed in different projects. Many different modules are available for a variety of purposes.
Node.js modules are created by various third-party organizations to provide the needed features that Node.js lacks out of the box. This community of contributors is active in adding and updating modules.
The Node modules have a managed location called the Node Package Registry where packages are registered. This allows you to publish your own packages in a location where others can use them as well as download packages that others have created. The Node Package Registry is located at https://npmjs.com. From this location you can view the newest and most popular modules as well as search for specific packages

 (
https://npmjs.com
)

Home Page for NPM Registry

Here u can create whatever u want to create new packages or else find the details about already existing packages

USING THE NODE PACKAGE MANAGER

The Node Package Manager you have already seen is a command-line utility. It allows you to find, install, remove, publish, and do everything else related to Node Package Modules. The Node Package Manager provides the link between the Node Package Registry and your development environment.
The simplest way to really explain the Node Package Manager is to list some of the command-line options and what they do.

Node Package Manager Register Methods

Node.Js First Application

Before creating an actual "First Node Js Welcome !" application using Node.js.
let us see the components of a Node.js application. A Node.js application consists of the following three important components −
· Import required modules − We use the require directive to load Node.js modules.. In general for importing any modules in Node.js we use require keyword.

· Create server − A server which will listen to client's requests similar to Apache HTTP Server.This server is one which should be invoked by the user, but in apache tomcat we can get server automatically invoked.
· Read request and return response − The server created in an earlier step will read the HTTP request made by the client which can be a browser or a console and return the response.
Here in this stage once the server is configured with some port number, now it will be ready to receive request and response from the end user.

Creating Node.js Application
Step 1 - Import Required Module

We use the require directive to load the http module and store the returned HTTP instance into an http variable as follows –
 (
var http = require("http");
)

Here var is keyword which is used to create a variable and we use require to load the http package for initializing the http protocol.

Step 2 - Create Server
We use the created http instance and call http.createServer() method to create a server instance and then we bind it at port 8081 using the listen method associated with the server instance.
 (
http
.
createServer
(
function
(
request
,
response
)
{
// Send the HTTP header
// HTTP Status: 200 : OK
)

 (
// Content Type: text/plain
response
.
writeHead
(
200
, {
'Content-Type'
:
'text/plain'
});
// Send the response body as "Hello World"
response
.
end
(
First Node Js Welcome !
\n'
);
}).
listen
(
8081
);
// Console will print the message
console
.
log
(
'Server running at
http://127.0.0.1:8081/
'
);
)

Step 3 - Testing Request & Response

Let's put step 1 and 2 together in a file called hello.js and start our HTTP server as shown below –
 (
var
http
=
require
(
"http"
);
http
.
createServer
(
function
(
request
,
response
) {
// Send the HTTP header
// HTTP Status: 200 : OK
// Content Type: text/plain
response
.
writeHead
(
200
, {
'Content-Type'
:
'text/plain'
});
// Send the response body as "
First Node Js Program !
"
response
.
end
(
First Node Js Program !
\n'
);
}).
listen
(
8081
);
// Console will print the message
console
.
log
(
'Server running at http://127.0.0.1:8081/'
);
)

Now execute the main.js to start the server as follows −
 (
$ node hello.js
)

Verify the Output. Server has started.
 (
Server running at http://127.0.0.1:8081/
)

Make a Request to the Node.js Server

Open http://127.0.0.1:8081/ in any browser and observe the following
result

Note: HTTP Response Codes are classified into 5 classes

1. Informational responses (100–199)
2. Successful responses (200–299)
3. Redirection messages (300–399)
4. Client error responses (400–499)
5. Server error responses (500–599)
In our program we use 200 as response code. That means it is ok

Angular Modules

Angular applications are modular and Angular has its own modularity system called NgModules.

NgModules are containers for a cohesive block of code dedicated to an application domain, a workflow, or a closely related set of capabilities.

They can contain components, service providers, and other code files whose scope is defined by the containing NgModule.

They can import functionality that is exported from other NgModules, and export selected functionality for use by other NgModules. Every Angular application has at least one NgModule class, the root module, which is conventionally named AppModule and resides in a file named app.module.ts. You launch your application by bootstrapping the root NgModule.

While a small application might have only one NgModule, most applications have many more feature modules. The root NgModule for an application is so named because it can include child NgModules in a hierarchy of any depth.
 (
import {

NgModule

}
from '@angular/core';
import { BrowserModule } from '@angular/platform-browser'; import { AppComponent } from './app.component'; @NgModule ({
//Meta-data
imports:
[BrowserModule], declarations: [AppComponent
],
bootstrap:
[AppComponent

]
})
)

 (
export class AppModule { }
)

Bootstrap is a free and open-source CSS framework directed at responsive, mobile- first front-end web development. It contains CSS- and (optionally) JavaScript-based design templates for typography, forms, buttons, navigation, and other interface components.
image3.jpeg

image4.png

image5.png

image6.png

image1.jpeg

image2.png

