LECTURE NOTES ON

ADVANCED JAVA AND WEB TECHNOLOGIES (VI8CST27)

VII Semester
COMPUTER SCIENCE AND ENGINEERING

SRI VASAVI COLLEGE OF ENGINEERING AND TECHNOLOGY (A) PEDATADEPALLI

UNIT-V: Introduction to Servlets & JSP: Introduction to servlets, Life cycle of Servlet, Limitations of servlets, Java Server Pages: JSP Overview, Components of a JSP Page: Directives, comments, Expressions, Scriptlets, Declarations, implicit objects, Database Access, session tracking.
1) What is JSP?

· JSP Stands for Java Server Pages.
· It is the technology that allows you to easily create web content that has both static and dynamic components.
· Provides	expression	language	for	accessing	server-side objects.
· JSP specifications extend the java Servlet API.

Life Cycle of a JSP Page:
· A JSP Page services requests as a servlet.Thus,the life cycle of JSP Pages is determined by Java Servlet technology.
· When a request is mapped to a JSP page ,the web container first checks whether the JSP page’s servlet is older than the JSP page. If the servlet is older, the web container translates the JSP page into a servlet class and compiles the class

Internal Flow of JSP Page

 JSP Page Interface	
· Ever Jsp page should implement Servlet class
· They may Extend Servlet interface
· For JSP page there will be two main threads :
 (
void jspInit()-same as init()
void jspDestroy()-same as destroy()
)

JSP COMPONENTS:

	Directives
	Are used to control how the web container translates and executes the jsp page.

	Scripting Element
	Are inserted into the JSP Pages servlet class.

	Expression Language
	Expression Are passed as parameters to calls to the JSP expression evaluator.

	Jsp[set|get]Property
	Elements are converted into method calls to java beans components.

	Custom tags
	Are converted into calls to the tag handler that implements the custom tag.

In JSP if we want to use any component to be added within the program, we need to use <% and %>. These are known as Scriplets and for any piece of code or component we need to use Scriplets functionality.

For displaying any statement as output, we can use following statements in JSP:
1) out.println(“Statement to be displayed”);
2) out.write(“Statement to be printed”);
3) out.print(Any expression);

 DIRECTIVE:	
· Specifies what JSP container must do.
· It starts with @character within the tag.
· There are 3 directive-
1) page directive,
2) include directive and
3) taglib directive.

Syntax of JSP Directive:

 (
<%@ directive attribute=
"value"
%>
)

DECLARATIONS:	
· It is a block of java code that is used to define class wide variables and methods in the generated class file.
· It is enclosed between <%!	and	%>

 (
<%!
Int a;
)

 (
Float b;
Public void Add()
{
Piece of logic part
}
%>
)

SCRIPLETS:	
· It is the block of a java code that is executed when jsp is executed .
· (
<%
Out.println(“HELLO JSP WORLD”);
%>
)It is enclosed in <% and %>.

EXPRESSIONS:
· It is a shorthand notation for a scriplet that outputs a value in the response stream back to the client.
· It is enclosed in <%= and %>.

 (
<%=
new Date()
%>
<
input type
=
text value=’<%=request.getParameter(“age”)%>
’
name=’age’
>
)

COMMENTS:	
It is given using <%- -	and	- -%>
Sqrt.jsp	[Example program to calculate square root of given number]
 (
<html>
<head>
<title> Example on Expressions
</title>
</head>
<body>
<p>The square root of 5 is <%= Math.sqrt(5)
%></p>
<%-- Example of SQRT function using two ways --
%>
<h2> using Scriplets the same example is derived </h2>
<%
out.write("<p>The square root of 5 is "); out.print(Math.sqrt(5));
%>
</body>
<html>
)

Lab 8 Program :	To display current date and time
 (
<%@ page import = "java.io.*,java.util.*, javax.servlet.*" %>
<html>
<head>
)

 (
<title>Display Current Date & Time</title>
</head>
<body>
<center>
<h1>Display Current Date & Time</h1>
</center>
<%
Date date = new Date();
out.print("<h2 align = \"center\">"
+date.toString()+"</h2>");
%>
</body>
</html>
)

Example: Program to Retrieve the Current IP Address of the PC
 (
<html>
<head><title>Hello World</title></head>
<body>
Hello World!

<%
out.println("Your IP address is " + request.getRemoteAddr());
%>
</body>
</html>
)

 (
EXPECTED OUTPUT :
)

JSP IMPLICIT OBJECTS

There are 9 jsp implicit objects. These objects are created by the web container that is available to all the jsp pages. The available implicit objects are out, request, config, session, application etc. A list of the 9 implicit objects is given below:

1) JSP out implicit object

For writing any data to the buffer, JSP provides an implicit object named out. It is the object of JspWriter. In case of servlet you need to write:
 (
PrintWriter out=response.getWriter ();
)

IN JSP we can declare out as:
 (
out.println();
out.write();
out.print();
)

2) Request Implicit Object
The JSP request is an implicit object of type HttpServletRequest i.e. created for each jsp request by the web container. It can be used to get request information such as parameter, header information, remote address, server name, server port, content type, character encoding etc.
Example:
 (
String name=request.getParameter(
"uname"
);
)

3) JSP response implicit object

It can be used to add or manipulate response such as redirect response to another resource, send error etc.

Example
 (
<
%
response.sendRedi
rect("htt
p://
www.googl
e.
com");
%
>
)

4) JSP config implicit object
In JSP, config is an implicit object of type ServletConfig. This object can be used to get initialization parameter for a particular JSP page. The config object is created by the web container for each jsp page.
Generally, it is used to get initialization parameter from the web.xml file.
5) Session Tracking Object
In JSP, session is an implicit object of type HttpSession.The Java developer can use this object to set,get or remove attribute or to get session information.
 (
session.setAttribute(
"user"
,name);
)

 (
String name=(String)session.getAttribute(
"user"
);
)

Web Applications:

JAVA SERVLETS

Web Application is an application that runs in Web. A Java web application is a collection of dynamic resources (such as Servlet, Java Server Pages, Java classes and jars) and static resources (HTML pages and pictures). A Java web application can be deployed as a ".war" file. The ".war" file is a zip file which contains the complete content of the corresponding web application.

 (
Web Browser
) (
Web Server
)Http Request
Http Response

A Servlet is a Java class which extends "HttpServlet" and answers a HTTP request within a web container.
What is web client/browser?
· Web client makes a request to web server using HTTP protocol.
· Web client receives HTML sent from server and displays it to end user.
· Internet Explorer, Mozilla Firefox and Netscape Navigator are widely used web browsers.
· Browser is also responsible for running client-side scripting written in JavaScript.

HTTP PROTOCOL:
· HTTP is an application protocol implemented on TCP/IP.
· It is request and response protocol.
· Client sends a request to receive information from server or invoke a process on the server.

· It is a stateless protocol - client and server do not maintain information about each other.
[image:]

Java Servlets:

· Servlet are server side components that provide a powerful mechanism for developing server side programs.
· 	Servlet provide component-based, platform-independent methods for building Web-based applications, without the performance limitations of CGI programs.
· 	Using Servlet web developers can create fast and efficient server side application which can run on any Servlet enabled web server.
· Servlet run entirely inside the Java Virtual Machine.
· Servlet can access the entire family of Java APIs, including the JDBC API to access enterprise databases.
· Servlet can also access a library of HTTP-specific calls, receive all the benefits of the mature java language including portability, performance, reusability, and crash protection.

· Servlet are not designed for a specific protocol. It is different thing that they are most commonly used with the HTTP protocols Servlet uses the classes in the java packages javax.servlet and javax.servlet.http.

Life Cycle of Servlet

The following are the paths followed by a Servlet.

· The Servlet is initialized by calling the init () method.
· The Servlet calls service() method to process a client's request.
· The Servlet is terminated by calling the destroy() method.
· Finally, Servlet is garbage collected by the garbage collector of the JVM.

[image:]

1) Start: Execution of servlet begins.

2) Loading & instantiation void init(): It is called when servlet is first loaded. This method lets you initialize servlet.
3) Initialized void service(): The purpose of this method is to serve a request. You can call it as many times as you like.
4) Handling request and destroying servlet: Java application must be first determined what code is needed to execute the request URL to provide a response. To destroy servlet Void destroy method is used at the end of servlet life cycle.
5) End of Request Thread: When service() finishes its task, either the thread ends or returns to the thread pool that is managed by servlet contaier.
6) End: Servlet lifecycle finishes.

7) Stop: Servlet stop executing.

Writing Service Methods:

· The service() method is the main method to perform the actual task.
· The Servlet container (i.e. web server) calls the service() method to handle requests coming from the client(browsers) and to write the formatted response back to the client.

· 	Each time the server receives a request for a Servlet, the server spawns a new thread and calls service.
· 	The service() method checks the HTTP request type (GET, POST, PUT, DELETE, etc.) and calls do Get, do Post, do Put, do Delete, etc. methods as appropriate.
Servlet Interface:
· Specifies the method to be implemented by the class(Servlet)that is to be Run by Web Container.
· Each Servlet must directly or indirectly implement this interface.

	METHOD
	MEANING

	void init(ServletConfig config)
	It is invoked by web container after
the Servlet is instantiated.

	void	service(ServletRequest	req, ServletResponse res)
	This is called whenever a request is made by client for this Servlet.This method is turn may call other method
such as do Post and do Get in HttpServlet.

	void destroy()
	This	method		is	called	before removing	a	Servlet	from		web
container.

	ServletConfig getServletConfig()
	This returns the servletConfig that
was passed to the Servlet during init()

Limitations of Servlet

Here are the disadvantages for using Servlet:

· One servlet is loaded into JVM. It does matter numbers of requests.
· When there is a request, there is a thread, not a process.
· Servlet is persistent until it destroys.

· Designing in a servlet is difficult and slows down the application.
· You need a JRE(Java Runtime Environment) on the server to run servlets.
· For non-java developers, servlet is not suitable as they required to have a broad knowledge of Java servlet.
· HTML code is mixed up with Java code therefore, changes done in one code can affect another code.
· Writing HTML code in servlet programming is very difficult. It also makes servlet looks bulky.
· In servlet programming, if you want to use implicit objects, you need to write some additional code in order to access them.
· Developers	must	take	care of	exception handling	because	servlet programming is not thread-safe by default.

Deployment descriptor-web.xml

· It is an XML file that provides information about how to configure and deploy web application.
· Can contains information about servlets,listeners,filters,context parameters and security.
· When you create a web application using Java EE6.0,web.xml is not provided by default. For web application in Java EE 5.0 or before ,It is automatically provided.
· Add web.xml by selecting file ->New File.select standard Deployement descriptor(web.xml) in file types and click on Next and finish.

DATABASE ACCESS & SESSION TRACKING

Session simply means a particular interval of time.

Session Tracking is a way to maintain state (data) of an user. It is also known as session management in servlet.
In general we can use any type of database for connecting JSP page to store and retrieve the data from centralized data storage location. Here we are going to use MY-SQL as back end database to store and retrieve the information.
For connecting the JSP pages with My-SQL we need to use JDBC connectivity with Type 4 Driver. Once JDBC type 4 driver is constructed now the JSP pages can be easily connected with the database.
Example program to create JSP Login page and try to authenticate the user login credentials from the My-SQL Database
In order to perform this task, we need to construct one login page and home page in JSP and then try to add some user details in the My-SQL database and once the user try to login with appropriate userid and password the application should authenticate and if it is a valid user, the application will direct the user to main page. If the user authentication is failed it should direct him to login authentication failed page.

Home.jsp

<%@ page import="java.sql.*" %>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO- 8859-1">

<title>Home</title>

</head>

<body>

<%

Connection con= null; PreparedStatement ps = null; ResultSet rs = null;
String driverName = "com.mysql.jdbc.Driver"; String url = "jdbc:mysql://localhost:3306/Sample"; String user = "root";
String password = "root";

String sql = "select usertype from userdetail";

try
{

Class.forName(driverName);

con = DriverManager.getConnection(url, user, password); ps = con.prepareStatement(sql);
rs = ps.executeQuery();

%>

<form method="post" action="/Login/login.jsp">

<center><h2 style="color:green">JSP Login Example</h2></center>

<table border="1" align="center">

<tr>

<td>Enter Your Name :</td>

<td><input type="text" name="name"/></td>

</tr>

<tr>

<td>Enter Your Password :</td>

<td><input type="password" name="password"/></td>

</tr>

<tr>

<td>Select UserType</td>

<td><select name="usertype">

<option value="select">select</option>

<%

while(rs.next())

{

String usertype = rs.getString("usertype");

%>

<option value=<%=usertype%>><%=usertype%></option>

<%

}

}

catch(SQLException sqe)

{

out.println("home"+sqe);

}

%>

</select>

 (
</td>
</tr>
<tr>
<td></td>
<td><input type="submit" value="submit"/></td>
</table>
</form>
</body>
</html>
)

Login.jsp

 (
<%@ page import="java.sql.*" %>
<%@ page import="java.io.*" %>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO- 8859-1">
<title>Login</title>
</head>
<body>
<%! String userdbName; String userdbPsw; String dbUsertype;
%>
<%
Connection con= null; PreparedStatement ps = null;
)

ResultSet rs = null;

String driverName = "com.mysql.jdbc.Driver"; String url = "jdbc:mysql://localhost:3306/Sample"; String user = "root";
String dbpsw = "root";

String sql = "select * from userdetail where name=? and password=? and usertype=?";

String name = request.getParameter("name");

String password = request.getParameter("password"); String usertype = request.getParameter("usertype");

if((!(name.equals(null) || name.equals("")) &&
!(password.equals(null) ||
password.equals(""))) && !usertype.equals("select"))

{

try{ Class.forName(driverName);
con = DriverManager.getConnection(url, user, dbpsw); ps = con.prepareStatement(sql);
ps.setString(1, name); ps.setString(2, password); ps.setString(3, usertype); rs = ps.executeQuery(); if(rs.next())
{

userdbName = rs.getString("name");

userdbPsw = rs.getString("password"); dbUsertype = rs.getString("usertype");
if(name.equals(userdbName) && password.equals(userdbPsw) && usertype.equals(dbUsertype))

{

session.setAttribute("name",userdbName); session.setAttribute("usertype", dbUsertype); response.sendRedirect("welcome.jsp");
}

}

else response.sendRedirect("error.jsp"); rs.close();
ps.close();

}

catch(SQLException sqe)

{

out.println(sqe);

}

}

else

{

%>

<center><p style="color:red">Error In Login</p></center>

<%

getServletContext().getRequestDispatcher("/home.jsp").include(reques t,
response);

}

 (
%>
</body>
</html>
)

Expected Output:

image5.jpeg
nrre
Protocol

Web Brawser r_

image6.png
End of
- Request
thread

; Init()

‘ Service()

destroy() W

Servlet Life Cycle

image1.jpeg

image2.png
1P File
l Translation phase

Serviet File

] Compilation phase

Serviet Class

v
Called once] jspnit()

)
ispservice()
) Sends response.

Handle muttiple request and

Caledonce ——{——»| 'PPestrovl)

image3.png
< [¢] O D localhost:8082/Date/IPjsp

Hello World!
Your IP address1s 12700 1

image4.png
out JspWriter

request HttpServletRequest
response HttpServletResponse
config ServletConfig
application ServletContext
session HttpSession
pageContext PageContext

page Object

exception Throwable

