LECTURE NOTES ON

ADVANCED JAVA AND WEB TECHNOLOGIES (VI8CST27)

VII Semester
COMPUTER SCIENCE AND ENGINEERING

SRI VASAVI COLLEGE OF ENGINEERING AND TECHNOLOGY (A) PEDATADEPALLI

UNIT-III: Working with XML: Introduction, The syntax of XML, XML Document Structure, Document Type Definition (DTD), Namespaces, XML schemas, XSLT, XML Parsers - DOM and SAX.

1) What is XML?

· XML stands for Extensible Markup Language
· XML is a markup language much like HTML
· XML was designed to carry data, not to display data
· XML tags are not predefined. You must define your own tags
· XML is designed to be self-descriptive
· XML is a W3C Recommendation(World Wide Web Consortium)

Syntax of XML

XML syntax refers to the rules that determine how an XML application can be written. The XML syntax is very straight forward, and this makes XML very easy to learn. Below are the main points to remember when creating XML documents.

XML documents must contain one root element that is the parent of all other elements
 (
<? xml version="1.0" encoding="UTF-8
"
?>
<root>
<child>
<subchild>
</subchild>
</child>
</root>
)

<?xml version="1.0" encoding="UTF-8"?>
is also known as XML prolog

Features of XML:	

· Tag based language. tags are used to describe the content of the document
· Tags are defined by user and not by language
· Case sensitive and strict.
· Endorsed and maintained by w3c and used by all major companies like microsoft, oracle, Sun and IBM.
· Platform independent and language independent –any language on any platform can read process the data in xml document.
· With xml,white space is preserved

What is Well-formed XML
· Ever xml document must be a well formed xml document. A well- formed XML is an document that compiles with following rules:
· It has a single root element
· Ever tag is opened and closed. Tags must be properly nested.
· Values of an attribute is enclosed is quotes-single or double.

Course.xml
 (
<? xml version=”1.0” ?>
<course>
<name>java</name>
<fee currently=”INR”>7500</fee>
<prereqsite> c

Language</prereqsite>
</course>
)

Team.xml
 (
<?xml version=”1.0”?>
<team name=”Men In Bule”
<player>
)

 (
<name>M.S Dhoni</name>
<age> 30</age>
</player>
<player>
<name>Virat Kohli</name>
<age> 25</age>
</player>
<player>
<name>Suresh Raina</name>
<age> 25</age>
</player>
</team>
)

Why XML is Used?
We developers uses the XML files for following purposes:

· Storing the data for some application such as menu data or data for some comobox
· For developing the database driven websites.
· In image gallery application is can work as the data file (xml) /storing the names and location of the images.
· For shopping application it can be used to store the product details
· In travel applications XML data can be used to talk to booking gateway.
· On the web web services such as Weather services, Currency rates service etc. are using the XML language

 Where XML is Used	

XMl is being used many areas.

1) Data Transfer:

When data transfer is to be transferred from one application to another (Typically on different Systems).

2) Web Data :

 (
Program
Program
XML
) (
HTML
)Data that is displayed in different ways such as HTML and WML in web site typically Stored in Xml and then output. In the required from using programs .XML can separate data from presentation

 (
WML
)Here WML means Wireless Markup Language, which is used for enables web content to be displayed on cell phones and other mobile devices via Wireless Application Protocol (WAP).

3) REMOTE PROCEDURE CALL:

What method of remote object is to be called and what parameter to be passed in SOAP protocol is an example for it.

 (
<call>
<method>m1</method>
<param>10</param>
<param>20</param>
)

 (
Server
)	 (
<result>30</result>
)	 (
Client
)
4) Configuration data:

Data used to configure application is stored in the form of XML .Configuration files like
web.xml and struts.xml are example for it

Using Parsers

· Parser is used to read data from an XML document.
· Parser come from all major companies like Sun, Apache, Microsoft and IBM.
· Parse always checks whether document is well-formed. It may also optionally check whether document is valid.

 (
XML Parser
XML Document
Java Program
)
The following are different types of parser based on the way they provide access to data whether they perform validation

	Types of Parser
	Description

	Non-Validating Parsers
	Do not validate data with DTD and Schema

	Validate Parsers
	Check Whether Document is valid Based on DTD or Schema

	DOM parsers
	Provides access data using DOM API

	SAX Parsers
	Provides access data using SAX API

JAVA API for XML Processing:
The Java API for XML Processing (JAXP) trail provides an introduction to Java API for XML Processing (JAXP) 1.4 technology, via examples of JAXP applications.To make full use of the information in the Java API for XML Processing (JAXP) Tutorial, you should have knowledge of the following technology:

· The Java programming language and its development environment.
· The Extensible Mark-up Language (XML)
· The Document Object Model (DOM), as defined by the World Wide Web Consortium (W3C) DOM Working Group.
· Simple API for XML (SAX), as developed cooperatively by the members of the XML-DEV mailing list.

Document Object Model
This lesson presents the Document Object Model (DOM). A DOM is a standard tree structure, where each node contains one of the components from an XML structure. The two most common types of nodes are element nodes and text nodes. Using DOM functions lets you create nodes, remove nodes, change their contents, and traverse the node hierarchy.
 (
E
<course>
#Text
E

<name>java</name>
#Text
T
T
E
<fee currently=”INR”>7500

</fee>
#Text
T
T
E
<prereqsite> c

Language</prereqsite>
#Text
T
</course>
)

 (
E
) (
T
)Element Text Node

Why Use a DTD (Document Type Definition)
With a DTD, each of your XML files can carry a description of its own format. With a DTD, independent groups of people can agree to use a standard DTD for interchanging data. Your application can use a standard DTD to verify that the data you receive from the outside world is valid. You can also use a DTD to verify your own data. Seen from a DTD point of view, all XML documents (and HTML documents) are made up by the following building blocks:

· Elements
· Attributes
· Entities
· PCDATA (Parsed Character Data)
· CDATA (Character Data)

PCDATA
PCDATA means parsed character data.

Think of character data as the text found between the start tag and the end tag of an XML element.

PCDATA is text that WILL be parsed by a parser. The text will be examined by the parser for entities and markup.

Tags inside the text will be treated as markup and entities will be expanded.

However, parsed character data should not contain any &, <, or > characters; these need to be represented by the & < and > entities, respectively.

CDATA

CDATA means character data.

CDATA is text that will NOT be parsed by a parser. Tags inside the text will NOT be treated as markup and entities will not be expanded.

the qualifiers you can add to an element definition are listed in below:

	Qualifier
	Meaning

	?
	Optional(zero or more)

	*
	Zero or more

	+
	One or more

You can specify what type of data an element can contain parsed character data (PCDATA) or CDATA section ,which contain character data that is not parsed. The # that precedes PCDATA indicates that what follows is a special word rather than an element name.

DTD(Document Type Definition)

A Document Type Definition (DTD) defines the legal building blocks of an XML document. It defines the document structure with a list of legal elements and attributes.

A DTD can be declared inline inside an XML document, or as an external reference.

Internal DTD Declaration
If the DTD is declared inside the XML file, it should be wrapped in a DOCTYPE definition with the following syntax:
 (
<!DOCTYPE root-element [element-declarations] >
)

External DTD Declaration
If the DTD is declared in an external file, it should be wrapped in a DOCTYPE definition with the following syntax:
 (
<!DOCTYPE root-element SYSTEM "filename">
)

XML Namespace:
XML namespaces provide a simple method for qualifying names used in Extensible Markup Language documents by associating them with namespaces identified by URI.

 (
xmlns:namespace-prefix=”namespaceURI”
)

when a name space is defined in the start tag of an element ,all child elements with the same prefix ,are associated with same name space

 Default Namespaces:	
Defining a default name space for an element saves us from using prefix in all the child elements. it has the following syntax.

Xmlnx=”namespaceURI”
XSL (Extensible Style Sheet Language)

This is mainly used to create XML page with several styles and convert the xml page into more interactive way.

It contains three parts:

i) XSLT (XSL Transform)
ii) XSL
iii) XPath
 (
<?xml version=”1.0” encoding=”UTF-8”?>
<person>
<name>Rajesh</name>
<home:address xmlns: home =
www.srivasaviengg.ac.in
>
<home:dno>CSE, block</home:dno>
<home:street>Peddatadepalli</home:street>
<home:city>Tadepalligudem</home:city>
</home:address>
</person>
)

EXAMPLE :	LAB 7 PROGRAM

Write a XML File which will display the book information which includes the following:
1) Title of the Book
2) Author Name
3) ISBN Number
4) Publisher Name
5) Edition
6) Price

a) Write a Document Type Definition (DTD) to validate the above XML file.
b) Write a XML Schema Definition (XSD)

book.xml

 (
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="book.xsl"?>
<!DOCTYPE book SYSTEM "book.dtd">
<bookdetails>
<book>
<title>XML Bible</title>
<author>Elliotte Rusty Harold</author>
<isbn>9876543210</isbn>
<publisher>Hungry Minds</publisher>
<edition>4th</edition>
<price>$21.99</price>
</book>
<book>
<title>Artificial Intelligence: A Modern Approach</title>
)

<author>Stuart J. Russell</author>
<isbn>9876543220</isbn>
<publisher>Princeton Hall</publisher>
<edition>6th</edition>
<price>$36.09</price>
</book>
<book>
<title>Beginning Java 2</title>
<author>Ivor Horton</author>
<isbn>9876543220</isbn>
<publisher>wrox</publisher>
<edition>3th</edition>
<price>$8.95</price>
</book>
<book>
<title>HTML5: Up and Running</title>
<author>Mark Pilgrim</author>
<isbn>1234567890</isbn>
<publisher>O'REILLY</publisher>
<edition>1st</edition>
<price>$17.99</price>
</book>
</bookdetails>

book.dtd

CREATING A DTD for book.xml page

 (
<!ELEMENT bookdetails (book+)>
<!ELEMENT book (title,author,isbn,publisher,edition,price)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT isbn (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT edition (#PCDATA)>
<!ELEMENT price (#PCDATA)>
)

book.xsl

 (
<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0" xmlns:xsl=
"ht
t
p://www.w3.org/1999/XSL/Transform
">
<xsl:template match="/">
<html>
<body>
<h2 style="color:green;" align="center">Books</h2>
<table border="1" align="center">
<tr style="color:grey;">
<th>Title</th>
<th>Author</th>
<th>ISBN</th>
<th>Publisher</th>
)

<th>Edition</th>
<th>Price</th>
</tr>
<xsl:for-each select="bookdetails/book">
<tr>
<td style="font-family:'Comic Sans MS'; color:red;">
<xsl:value-of select="title"/>
</td>

<td style="text-transform: capitalize;
font-weight:bold;" align="center">
<xsl:value-of select="author"/>
</td>

<td style="color:blue">
<xsl:value-of select="isbn"/>
</td>

<td style="color:green; font-weight:bold;" align="center">
<xsl:value-of select="publisher"/>
</td>

<td style="pink" align="center">
<xsl:value-of select="edition"/>
</td>

<td style="color:violet; font-weight:bold;">

 (
<xsl:value-of select="price"/>
</td>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>
)

 (
EXPECTED OUTPUT
)

XML SCHEMA

Main features:

· XML syntax (there is a Schema for Schemas)
· uses and supports Namespaces
· object-oriented-like type system for declarations (with inheritance, subsumption, abstract types, and finals)
· global (=top-level) and local (=inlined) type definitions
· structured self-documentation

 Why to use XML Schema?	

· XML Schemas are extensible to future additions
· XML Schemas are richer and more powerful than DTDs
· XML Schemas are written in XML
· XML Schemas Support data types
· XML Schemas supports namespace

	Element
	Meaning

	<simpleType>
	Describes a simple
element

	<complexType>
	Describes a complex type

	<element>
	Describes a simple
element

	<choice>
	Allows one of the
specified element

	<sequence>
	Needs elements in the
given sequence

	<attribute>
	Describes and attribute of
an element

Most common data types are:

xs:string, xs:decimal, xs:integer, xs:boolean, xs:date, xs:time
 (
<xs:element name=”lastname” type=”xs:string”/>
<xs:element name=”age” type=”xs:integer”/>
<xs:element name=”dateborn” type=”xs:date”/>
)

XSLT(Extensible Style Sheet Language Transformation)

Before XSLT, first we should learn about XSL. XSL stands for EXtensible Style sheet Language. It is a styling language for XML just like CSS is a styling language for HTML.

XSLT stands for XSL Transformation. It is used to transform XML documents into other formats (like transforming XML into HTML).

[image:]

SYNTAX
 (
<?xml
version
=
"1.0"
?>
<?xml-stylesheet
type
=
"text/xsl"
href
=
"filename.xsl"
?>
)

XML Parsers - DOM and SAX

There are two types of XML parsers namely Simple API for XML and Document Object Model.

1) SAX (Simple API for XML)
2) DOM(Document Object Model)

The objective of DOM (Document Object Model) parser and SAX (Simple API for XML) parser are same but implementation is different. Both the parser work in different way internally, but intent of both are same. Internal implementation of DOM Vs SAX is different. It means, with same intent philosophy of the implementation are different. In order to understand the difference between DOM and SAX, you have to understand each one of the parsers.

The Main Key Differences between DOM and SAX are:

1) DOM parser load full XML file in-memory and creates a tree representation of XML document, while SAX is an event based XML parser and doesn’t load whole XML document into memory.
2) If you know you have sufficient amount of memory in your server you can choose DOM as this is faster because load entire XML in-memory and works as tree structure which is faster to access.
3) As a thumb rule, for small and medium sized XML documents, DOM is much faster than SAX because of in memory management.
4) As a thumb rule, for larger XML and for frequent parsing, SAX XML parser is better because it consume less memory.

 (
DOM

(Document

Object

Model)
SAX

(Simple

API

for

XML)

Parser
Abbreviation
DOM stands
for
Document

Object
Model,
SAX

stands

for

Simple

API

for
XML Parsing
type
Load
entire memory
and
keep

in

tree
event
based

parse
structure
size
of
Document
good
for
smaller
size
good

to

choose

for

larger

size

of
file.
Load
Load
entire
document
in memory
does not
load
entire
document.
suitable
better
suitable
for
smaller
and
efficient memory
SAX

is

suitable

for

larger

XML

doc
)
image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.jpeg

image1.png

image2.png

image3.png

image4.png

image5.png

