LECTURE NOTES ON

ADVANCED JAVA AND WEB TECHNOLOGIES (VI8CST27)

VII Semester
COMPUTER SCIENCE AND ENGINEERING

SRI VASAVI COLLEGE OF ENGINEERING AND TECHNOLOGY (A) PEDATADEPALLI

UNIT-II: JavaScript & DHTML: Overview of JavaScript, General Syntactic Characteristics, Primitives Operations and Expressions, Screen output and Keyboard Input, Control Statements, Object creation and Modification, Arrays, Functions, Constructors, Pattern Matching using Regular Expressions, Events and Event Handling.
1) What is DHTML?

DHTML stands for Dynamic Hypertext Markup language i.e., Dynamic HTML.

This is not just same like markup language or any programming language.This is a term which combines several features of web development technologies to create the web pages in a dynamic and very interesting way. By using this DHTML, we can create very interactive web pages. This DHTML concept is almost introduced by Microsoft Corporation with the release of the 4th version of IE (Internet Explorer) in the year 1997.

DHTML COMPONENTS

This DHTML mainly contains the following four components like

1. HTML 4.0
2. CSS (For interactive web page design)
3. Java Script
4. DOM(Document Object Model)
1) HTML 4.0

This is considered as client side mark-up language for, which is one of the primary components among DHTML.This will be used to represent the structure of a web page with several elements and tags.
 (
<! DOCTYPE HTML PUBLIC " -//W3C//DTD HTML 4.01//EN"
"htt
ps://www.w3.or
g
/TR/html4/strict.dtd"
>
)

Here DOCTYPE Defines Document Type Declaration, which is used for enable parsing and validation of HTML Documents based on Standard Generalized Markup Language (SGML) protocols.

This declaration references the DTD for the "strict" version of HTML 4.01.

Example of HTML 5

<! DOCTYPE HTML PUBLIC>

HTML5 does not define a DTD

FEATURES OF DHTML

Following are the various characteristics or features of DHTML (Dynamic HTML):

1. The DHTML is simple and we can create any web page in dynamic manner.
2. As it is dynamic page, there is a Dynamic Style feature that allows the users to alter the font, size, color, and content of a web page.
3. This is having a facility to create events, methods and properties and this is having a feature like code reusability.
4. The DHTML strictly follows data binding principle I.e it will synchronize the information collecting from both clients and data providers.
5. 	Using DHTML, users can easily create dynamic fonts for their web sites or web pages.
6. With the help of DHTML, users can easily change the tags and their properties.
7. The web page functionality is enhanced because the DHTML uses low-bandwidth effect.
8. The DHTML is asked to connect with database for getting more interaction with users.

2) What is JavaScript?

JavaScript is a text-based programming language used especially for both client side and server side that allows us to make web pages interactive. In general HTML gives structure for the web page and CSS gives style for the web page, but JavaScript gives web pages interactive elements which can make user more engaged.
Origin of Java Script

The founder of JavaScript was Brendan Eich. After two years, the language became the European Computer Manufacturer's Association (ECMA).

1) The Original JavaScript ES1 ES2 ES3 (1997-1999)
2) The First Main Revision ES5 (2009)
3) The Second Revision ES6 (2015)
4) The Yearly Additions (2016, 2017, 2018)

The various browser supports JavaScript technology. DHTML uses the JavaScript technology for accessing, controlling, and manipulating the HTML elements. The statements in JavaScript are the commands which tell the browser for performing an action.
JavaScript with DHTML

JavaScript can be included in HTML pages, which is mainly used for creating the web page content in dynamic manner. We can easily type the JavaScript code within the <head> or <body> tag of a HTML page. If we want to add the external source file of JavaScript, we can easily add using the <src> attribute.
The document.write() method of JavaScript, writes the output to a web page.

General Syntactic Characteristics

Syntactic Characteristics are the set of rules and properties for programs how they need to be constructed and executed. For java script syntax there are set of rules which are used for constructing the program.

All JavaScript scripts will be embedded in HTML documents in 2 days:

1) Direct Way
2) In-Direct Way

DIRECT WAY
 (
<script type=”text/javascript”>
- - -Script Related information
</script>
)

INDIRECT WAY

This is possible by specifying the specified file in the src attribute.

 (
<script type = "text/javaScript" src = "myExample.js">
</script>
)

Here myExample.js is external java script file which is included in the current HTML Page. If we want to write java script file externally, we need to save that file with extension
.js

LANGUAGE BASICS

The following are the set of language basics they are as follows:

1) Identifier form: This is one which can begin with a letter or underscore, followed by any number of letters, underscores, and digits

2) Case sensitive

3) 25 reserved words are present in java script, which should not be used while u declare variables.
[image:]

SOME FUTURE RESERVED WORDS

When choosing names for your JavaScript variables, avoid these reserved words!
[image:]

CREATING VARIABLES AND HOW TO SET VALUES FOR THAT VARIABLE

You can declare JavaScript variables with the var statement:
 (
var x;
var vehiclename;
)

Like any other language, Java script has operators, control structures, with all object oriented features

EXAMPLE : FIRST JAVA SCRIPT PROGRAM
 (
<!DOCTYPE HTML>
<html>
<head>
<title> First Java Script Example
</title>
</head>
<body>
<script type="text/javascript"> document.write("Hello java Script");;
</script>
</body>
</html>
)
 (
EXPECTED OUTPUT:
)

EXAMPLE: DEMO OF SWITCH CONDITION
 (
<html>
<head>
<title>Demo of Switch Statements </title>
<body>
<script type="text/javascript">
var d = new Date(); theDay=d.getDay();
switch (theDay)
{
case 5:
document.write("Finally Friday"); break;
case 6:
document.write("Super Saturday"); break;
default:
document.write("I'm really looking forward to this weekend!");
}
</script>
<p>This JavaScript will generate a different greeting based on what day it is</p>
</body>
</html>
) (
EXPECTED OUTPUT:
)

Note:
The getDay() method of java date class returns the value between 0 to 6 which
represents the day of the week by this date object.

	Value
	Day

	0
	Sunday

	1
	Monday

	2
	Tuesday

	3
	Wednesday

	4
	Thursday

	5
	Friday

	6
	Saturday

JAVASCRIPT VALUES

The JavaScript syntax defines two types of values:

1. Fixed values
2. Variable values

Fixed values are called Literals. Variable values are called Variables.
JAVASCRIPT LITERALS

The two most important syntax rules for fixed values are:

1. Numbers are written with or without decimals:

Example :	50 or 11.60

 (
EXAMPLE PROGRAM ON USAGE OF JAVA LITERALS
<! DOCTYPE html>
<html>
<body>
<h2>Number Example </h2>
)

 (
<p>Number can be written with or without decimals.</p>
<p id="demo"></p>
<script>
document.getElementById("demo").innerHTML = 19.20;
</script>
</body>
</html>
)
 (
EXPECTED OUTPUT:
)

PRIMITIVES OPERATIONS AND EXPRESSIONS

The following table shows the list of operators in different categories in JavaScript.
They are as follows:

	Arithmetic
	Relational
	Logical
	Miscellaneous

	+

-

*

/

%

++

-	-
	= =

!=

>

<

>=

<=

= = =

!= =
	&&

||

!
	+(Concatenation)

Note:

= = = (Strict Equal) will check if the same data type is present or not

!= = (Strict Not Equal)

FOR EXAMPLE

X=5 Y=”5”

If(x==y) returns true; but if (x===y) returns false;
PRIMITIVE TYPES- All primitive values have one of the five primitive types:
1) Number,
2) String,
3) Boolean,
4) Undefined, or
5) Null

For Example

1) Boolean values are true and false
2) The only Null value is null
3) The only Undefined value is undefined
4) The numbers such as int or float will return number type.
5) The String will return string type

EXAMPLE PROGRAM ON PRIMITIVE OPERATION IN JAVA SCRIPT

 (
<! DOCTYPE HTML PUBLIC>
<html>
<head>
<title> Example of Primitive Operations in java Script
</title>
)

</head>

<body>

<script type = "text/javascript"> var a = 52;
var b = 15; var c = "Test";
document.write("a + b = "); output= a + b; document.write(output); document.write("
"); document.write("a - b = "); output = a - b; document.write(output); document.write("
"); document.write("a / b = "); output = a / b; document.write(output); document.write("
"); document.write("a % b = "); output = a % b; document.write(output); document.write("
"); document.write("a + b + c = "); output = a + b + c; document.write(output);

 (
document.write("
"); a = ++a;
document.write("++a = "); output = ++a; document.write(output); document.write("
"); b = --b;
document.write("--b = "); output = --b; document.write(output); document.write("
");
</script>
</body>
</html>
)
 (
EXPECTED OUTPUT:
)

OTHER EXPRESSIONS

The Math Object will return the following operations

1. floor
2. round

3. max
4. min
5. trig functions
6. MAX_VALUE
7. MIN_VALUE
8. NaN,
9. POSITIVE INFINITY 10.NEGATIVE_INFINITY
11. PI

EXAMPLE ON MATH OBJECTS IN JAVA SCRIPT

 (
<html>
<body>
Demonstrating Math constants in javascript.
</br>
<script type = "text/javascript"> document.write("Value of PI is: "+Math.PI); document.write("</br>");
document.write("Value of Square root of 5 is: "+Math.sqrt(5)); document.write("</br>");
document.write("Value of Square root of -5 is: "+Math.sqrt(-5)); document.write("</br>");
document.write("Value of Logarithm value of 2 is: "+Math.LN2); document.write("</br>");
document.write("Value of Logarithm value of 10 is: "+Math.LN10);
)

document.write("</br>");

document.write("Round of Number 15.6505 is: "+Math.round(15.6505));

document.write("</br>");

document.write("Round of Number -15.6505 is: "+Math.round(-15.6505));

document.write("</br>");

document.write("Floor value if positive input value (5.3) is provided: "+Math.floor(5.3));

document.write("</br>");

document.write("Floor value if negative input value (-5.8) is provided: "+Math.floor(-5.8));

document.write("</br>");

document.write("Ceil value if negative input value (-65.2) is provided: "+Math.floor(-65.2));

document.write("</br>");

document.write("Ceil value if positive input value (5.2) is provided: "+Math.ceil(5.2));

document.write("</br>");
document.write("Ceil value if positive input value (10.6) is provided: "+Math.ceil(10.6));

document.write("</br>");

document.write("Rounded value if positive input value (5.3) is provided: "+Math.round(5.3));

document.write("</br>");

document.write("Rounded value if negative input value (-5.8) is provided: "+Math.round(-5.8));

document.write("</br>");

document.write("Rounded value if null is provided: "+Math.round(null));

 (
document.write("</br>");
document.write("Rounded value if string is provided: "+Math.round("Java Programming"));
document.write("</br>");
</script>
</body>
</html>
)

 (
EXPECTED OUTPUT:
)

EXAMPLE ON TRIPLE EQUAL

 (
<!DOCTYPE html>
<html>
<body>
<p id="demo"></p>
<p id="demo1"></p>
<script>
var x = 10;
document.getElementById("demo").innerHTML = (x == "10");
)

 (
document.getElementById("demo1").innerHTML = (x === "10");
</script>
</body>
</html>
)
 (
EXPECTED OUTPUT:
)

SCREEN OUTPUT

The JavaScript model has two types of screen outputs such as :

I) if the java script model we want to apply for the HTML Document then it is document Object

2) If the java script model we want to use for the browser to display the output, then it is Window Object.

1) Document Object

The document object contains a method known as write(), to display the screen out on html page.

2) Window Object

The window object contains a methods such as alert, confirm, & prompt for creating dialog boxes.

There are three different keyboard events in JavaScript:

1) keydown : Keydown happens when the key is pressed down, and auto repeats if the key is pressed down for long.
2) keypress : This event is fired when an alphabetic, numeric, or punctuation key is pressed down.
3) keyup : Keyup happens when the key is released.

ALERT BOX
An alert box is often used if you want to make sure information comes through to the user. When an alert box pops up, the user will have to click "OK" to proceed.
Syntax:
 (
alert(„sometext‟);
)

CONFIRM BOX

A confirm box is often used if you want the user to verify or accept something. When a confirm box pops up, the user will have to click either "OK" or "Cancel" to proceed. If the user clicks "OK", the box returns true. If the user clicks "Cancel", the box returns false.

SYNTAX:
 (
confirm(„sometext‟);
)

PROMPT BOX

A prompt box is often used if you want the user to input a value before entering a page.

When a prompt box pops up, the user will have to click either "OK" or "Cancel" to proceed after entering an input value.

If the user clicks "OK" the box returns the input value. If the user clicks "Cancel" the box returns null.

SYNTAX:
 (
prompt("sometext","defaultvalue");
)

DEMO ON WINDOW.ALERT ()

 (
<!DOCTYPE html>
<html>
<head>
<title>
JavaScript Output using window. Alert() Using
Alert.Html
</title>
</head>
<body>
<h1>Demo on Screen Output Using Window.Alert</h1>
<script type="text/javascript">
window.alert(50 * 2);
</script>
</body>
</html>
) (
EXPECTED OUTPUT:
)

 (
<!DOCTYPE html>
<html>
<head>
<title>
JavaScript Output using window. Alert() Using
Alert1.Html
</title>
</head>
<body>
<h1>Demo on Screen Output Using Window.Alert</h1>
<script type="text/javascript">
window.alert("To Display String as Alert");
</script>
</body>
</html>
)

 (
EXPECTED OUTPUT:
)
DEMO ON WINDOW.CONFIRM ()
 (
<!DOCTYPE html>
<html>
<body>
<h2>JavaScript Confirm Box</h2>
<button onclick="Conform()">Click on Me</button>
<p id="demo"></p>
<script type="text/javascript"> function Conform()
{
var a;
if (confirm("Press a button!"))
)

 (
{
a= "You pressed OK!";
}
else
{
a= "You pressed Cancel!";
}
document.getElementById("demo").innerHTML = a;
}
</script>
</body>
</html>
)

 (
EXPECTED OUTPUT:
)

DEMO ON WINDOW.PROMPT ()

 (
<!DOCTYPE html>
<html>
<body>
<p>Click the button to give Demo the prompt box.</p>
<button onclick="Prompt()">Click Me</button>
<p id="demo"></p>
<script type="text/javascript"> function Prompt()
{
var num = prompt("Please enter Student Regd Number", "For Ex:18A81A0...");
if (num != null)
{
document.getElementById("demo").innerHTML =
)

 (
EXPECTED OUTPUT:
) (
"Welcome " + num + "! For WT Classes ?";
}
}
</script>
</body>
</html>
)

CONTROL STATEMENTS

A control statement is a statement that determines whether other statements will be executed. .Every programming language, basically, has two types of control statements as follow

1) Conditional Statements: based on an expression passed, a conditional statement makes a decision, which results in either YES or NO.
2) Iterative Statements (Loop): Until and unless the expression or the condition given is satisfied, these statements repeat themselves.

1) Condition Statements

This is where the flow of the execution in a program is decided. Conditional Statements decide the next step based of the result. Conditional statement results in either True or False. Whatever the condition is passed, if that is true, then the program moves to the next step and if the condition is False, then the program moves to another step. These statements are executed only once, unlike Loop statements.

The following are the list of several conditional statements: IF
IF-ELSE SWITCH
Syntax:

 (
if (condition)
{
//code

block

to

be

executed

if

condition

is

satisfied
}
)

 (
if (condition)
{
}
else
{
//
code
to
be
executed
of
condition
is
false
}
//
code
to
be
executed
of
condition
is
true
)

SWITCH CONDITION

switch (expression)

	{
	

	case a:
	

	//code
	block
	to
	be
	executed

	Break;

case b:
	
	
	
	

	//code
	block
	to
	be
	executed

	Break;

case n:
	
	
	
	

	//code
	block
	to
	be
	executed

	Break;
	
	
	
	

default:
//default code to be executed if none of the above case is executed

}

EXAMPLE PROGRAM ON IF-CONTROL STATEMENTS
IF.html
 (
<!DOCTYPE html public>
<html>
<head>
<title>demo on if statement</title>
<script type="text/javascript">
var age = prompt("Please enter your age","Age in Numbers"); if(age>=18)
document.write("You are an adult
"); if(age<18)
document.write("You are NOT an adult
");
</script>
</head>
<body>
</body>
</html>
)

 (
EXPECTED OUTPUT:
)
2) ITERATIVE STATEMENTS
There are three Iterative statements:

1. WHILE,
2. DO-WHILE and

3. FOR.

Let‟s understand each with syntax.

1) WHILE

Difference between IF and while can be, IF executes code „if‟ the condition is satisfied while the while keeps repeating itself until the condition is satisfied.
Syntax
 (
while (condition)
{
//code block to be executed when condition is

satisfied
}
)

2) Do-While
The do while loop is a variant of the while loop. This loop will execute the code block once, before checking if the condition is true, then it will repeat the loop as long as the condition is true.

 (
do
{
//

c
o
d
e

b
lo
c
k

t
o

be

e
xec
u
te
d
}
wh
i
l
e

(
c
on
d
it
i
o
n
);
)

3) For Loop

This is used to execute a condition based on some loop.

Statement 1 is executed (one time) before the execution of the code block. Statement 2 defines the condition for executing the code block.
Statement 3 is executed (every time) after the code block has been executed.

Syntax

 (
for (
statement 1; statement 2; statement 3)
{
// code block to be execute
}
)

OBJECT CREATION AND MODIFICATION

Objects can be created with new.The most basic object is one that uses the Object constructor, as in
 (
var myObject = new Object();
)

The new object has no properties - a blank object

Object Modifications

The objects can be modified at any time by adding as many as properties we require.
For Example:
 (
var myAirplane = new
Object();
myAirplane.make =

"Swift";
myAirplane.model =

"Dzire";
)

· Properties can be accessed by dot notation or in array notation, as in
 (
var property1 = myAirplane["model"];
)

· If you try to access a property that does not exist, you get undefined

· Properties can be deleted with delete, as in
 (
delete myAirplane.model;
)

ARRAYS

What are arrays in JavaScript?

[image:]

In JavaScript, an array is an ordered list of values. Each value is called an element
specified by an index First, an array can hold values of different types. For example, you can have an array that stores the number and string, and boolean values. Second, the length of an array is dynamically sized and auto-growing.
Array elements can be primitive values or references to other objects
1. Length is dynamic - the length property stores the length
2. Array objects can be created in two ways, with new, or by assigning an array literal

JavaScript array is an object that represents a collection of similar type of elements. There are 3 ways to construct array in JavaScript
1. By array literal
2. By creating instance of Array directly (using new keyword)
3. By using an Array constructor (using new keyword)

 (
Example
var examp1 =
new
Array(26, "student", true);
// By Using Java Script Array Constructor
var examp2 = [26, "student", true];
//By using Array Literal
var examp3 = new Array(26);
// Java Script Array using new keyword
)

The length of an array is the highest subscript to which an element has been assigned, plus 1
For example
 (
examp1
[123] = "AJWT";
//Length is 124
)

Some Important Java Script Array Methods
There are more than 30 java script array methods and some of the main methods are as follows:
1) concat() :	This will return the new array object which holds more than two merged arrays.
2) every() :	This is used to determine whether all the elements are satisfying the providing condition.
3) fill() :	This is used to fill all the elements into array with static values.
4) find() :	This will return the first element in the	given array that satisfies the specific condition.
5) includes() : This will check whether given condition is present or not.
6) join() : This is used to join elements of an array as string
7) reverse(): It reverses the given elements of an array
8) sort(): This is used to return the elements of given array in sorted manner.

9) slice(): This will return the new array that contain copy of part of given array.
10) Push():	This is used to add one element at the end of array.
11) Pop(): it removes and returns the last element of an array.

FUNCTIONS IN JAVASCRIPT

A function contains code that will be executed by an event or by a call to that function.
You may call a function from anywhere within the page (or even from other pages if the function is embedded in an external .js file).
Functions can be defined both in the <head> and in the <body> section of a document.
However, to assure that the function is read/loaded by the browser before it is called, it could be wise to put it in the <head> section.
SAMPLE PROGRAM
 (
<! DOCTYPE HTML>
<html>
<head>
<script type="text/javascript"> function dispMessage()
{
alert("Hello World!");
}
</script>
</head>
<body>
<form>
<input type="button" value="Click me!" onClick="dispMessage()" >
</form>
</body>
</html>
)

Global Functions:
These Functions are directly accessible from script. They are provided by global object.
1. isNAN(expr)
2. parseFloat(String)
3. parseInt(String)
1) isNaN(expr)

This will return true if the result is not a number.If the return value is number, then it will return as false.
For example
 (
is
N
a
N
(
„
19
‟
);
)

This will return false because 19 is a number hence condition is failed
 (
isNaN(„1234AB‟);
)

This will return true because 1234 is a number but AB is not number, hence this will return true.
 (
isNaN(„ „);
)

Return False because the empty string is converted to value 0,which is not a NaN.

2) parseFloat(String)

The parseFloat() function parses a string and returns a floating point number. This function determines if the first character in the specified string is a number. If it is, it parses the string until it reaches the end of the number, and returns the number as a number, not as a string.

var a = parseFloat("50") ;				// return the value as 50 var b = parseFloat("60.00")			/ / return the value as 60 var c = parseFloat("11.59")		/ / return the value as 11.59 var d = parseFloat("34 45 66")	/ / return the value as 34
var f = parseFloat("4 decade")	/ / return the value as 4

var g = parseFloat("He was just 18 ")

// Return NaN because the starting value is not number it is string.

3) parseInt(String)

The parseInt() function parses a string and returns a integer point number
 (
n = parseInt("3.14");
Output n= 3 // returns value 3 parseInt("2021@webtechnologies");
Output: n = 2021
)

Java Script Constructors

A constructor is a function that creates an instance of a class which is typically called an “object”. In JavaScript, a constructor gets called when you declare an object using the new keyword.The purpose of a constructor is to create an object and set values if there are any object properties present. It‟s a neat way to create an object because you do not need to explicitly state what to

return as the constructor function, by default, returns the object that gets created within it.

[image:]

In JavaScript, here‟s what happens when a constructor is invoked:

· A new empty object is created

· this keyword starts referring to that newly created object and hence it becomes the current instance object

· The newly created object is then returned as the constructor‟s returned value

Example Program
 (
<!DOCTYPE html>
<html>
<body>
<h2>JavaScript Object Constructors</h2>
<p id="demo"></p>
<script type=”text/javascript” >
// Create Constructor Function for Student function Student(first, last, age, dept)
)

 (
{
this.firstName = first; this.lastName = last; this.age = age; this.department = dept;
}
// create an Object for Invoking the constructor
var student = new Student("Suresh", "K", 22, "CSE");
// Display Student age property document.getElementById("demo").innerHTML = "Student Age is " + student.age + ".";
</script>
</body>
</html>
)
 (
EXPECTED OUTPUT:
)
image2.jpeg
abstract
boolean
break
byte
case
tch

char
class
const

continue

else
enum
export
extends
false
final
finally
float
for

function

debugger goto

default
delete
do
double

if
implements
import

in

nstanceof super

int switch

interface synchronized

let this
long. throw
native throws
new transient
null true
package try

private typeof
protected var
public void

return volatile
short while
static with

image3.png
ndex | 1

L,

image4.png
Student 1

First Name: Krishna
Last Name : Kanth

Student 2

First Name: Pavan
Last Name : Kumar

Constructor (fname,Iname)

{
this.firstname = fname;

this.lastname = Iname;

Krishna
Kanth

Pavan

image1.png
JavaScript reserved words

Break delete function return typeof
case Do if switch var
catch Else in this void
continue |Finally instanceof | throw while
default For new try with

