
UNIT-VI

B.Tech(CSE)-V SEM

Dept of CSE 1

UNIT : VI Signals :
Signal functions
unreliable signals
 interrupted system calls
kill and raise functions
 alarm, pause functions alarm, pause functions
 abort, sleep functions

Dept of CSE 2

Textbook:

Dept of CSE 3

Introduction:
 Signals are software interrupts.
 Signals provide a way of handling asynchronous events.

 For eg:
 a user at a terminal typing the interrupt key to stop a user at a terminal typing the interrupt key to stop

the program
 the next program in a pipeline terminating prematurely.

Dept of CSE 4

Signal concepts:
 Every signal has a name. They all begin with the three

characters SIG.
 For example:

 SIGABRT is the abort signal that is generated when a process
calls the abort function.calls the abort function.

 SIGALRM is the alarm signal that is generated when the timer
set by the alarm function goes off.

 Signal names are all defined by positive integer constants (the
signal number) in the header <signal.h>.

 No signal has a signal number of 0. The kill function uses
the signal number of 0 for a special case. POSIX.1 calls this
value the null signal.

Dept of CSE 5

Conditions (situations) that generate signals:

 Numerous conditions can generate a signal:
 The terminal-generated signals occur when users press

certain terminal keys. Pressing the DELETE key or Control-C.
 Hardware exceptions generate signals. For example, divide
by 0 and invalid memory reference. by 0 and invalid memory reference.

 The kill(2) function allows a process to send any signal to
another process or process group, with limitations: we have to
be the owner of the process that we’re sending
the signal to, or we have to be the super user.

 The kill(1) command allows us to send signals to other
processes. This command is often used to terminate a
runaway background process.

Dept of CSE 6

Conditions that generate signals:
 Software conditions can generate signals when a

process should be made aware of various events.
 For example:

 SIGURG: generated when out-of-band data arrives over a
network connection).network connection).

 SIGPIPE: generated when a process writes to a pipe that
has no reader).

 SIGALRM: generated when an alarm clock set by the
process expires).

Dept of CSE 7

Signal dispositions:
 We can tell the kernel to do one of three things when a

signal occurs.
 This is called the disposition of the signal, or

the action associated with a signal.
 Ignore the signal. Most signals can be ignored, but two Ignore the signal. Most signals can be ignored, but two

signals can never be ignored: SIGKILL and SIGSTOP.
 Catch the signal. To do this, we tell the kernel to call a

function of ours whenever the signal occurs. In our function,
we can do whatever we want to handle the condition.

 Let the default action apply. Every signal has a
default action. The default action for most signals is to
terminate the process.

Dept of CSE 8

Signal function:
 The simplest interface to the signal features of the UNIX

System is the signal function.

#include <signal.h>
void (*signal(int signo, void (*func)(int)))(int);

/* Returns: previous disposition of signal if OK, SIG_ERR on error */

 Arguments:
 The signo argument is the name of the signal.
 The value of func one of the following:

 the constant SIG_IGN, which tells the system ignore the signal;
 the constant SIG_DFL, which sets the action associated with the signal to its

default value;
 the address of a function to be called when the signal occurs, which arranges to

"catch" the signal. This function is called either the signal handler or
the signal-catching function.

Dept of CSE 9

Unreliable signals:
 In earlier versions of the UNIX System, signals were unreliable, which

means that signals could get lost: a signal could occur and the process
would never know about it.

 One problem with these early versions was that the action for a signal
was reset to its default each time the signal occurred.

 The code that was described usually looked like: The code that was described usually looked like:

Dept of CSE 10

int sig_int(); /* my signal handling function */
...

signal(SIGINT, sig_int); /* establish handler */
...
sig_int()
{
signal(SIGINT, sig_int); /* reestablish handler for next time */
...

/* process the signal ... */ .
}

Unreliable signals:
 The problem with this code fragment is that there is a

window of time (after the signal has occurred, but before
the call to signal in the signal handler) when the interrupt
signal could occur another time.

 This second signal would cause the default action to occur, This second signal would cause the default action to occur,
which terminates the process. This is one of those
conditions that works correctly most of the time, causing
us to think that it is correct, when it isn’t.

 Another problem with these earlier systems was that the
process was unable to turn a signal off when it didn’t want
the signal to occur. All the process could do was ignore the
signal.

Dept of CSE 11

Interrupted System Calls:
 In earlier UNIX systems, if a process caught a signal while

the process was blocked in a "slow" system call, the system
call was interrupted.

 The system call returned an error and errno was set
to EINTR. to EINTR.

 This was done under the assumption that since a signal
occurred and the process caught it, there is a good chance
that something has happened that should wake up the
blocked system call.

 We have to differentiate between a system call and a
function. It is a system call within the kernel that is
interrupted when a signal is caught.

Dept of CSE 12

Interrupted System Calls:
 The system calls are divided into two categories:

 the "slow" system calls and
 all the others.

 The slow system calls are those that can block forever.
 Included in this category are:

 Reads that can block the caller forever if data isn't present with certain file Reads that can block the caller forever if data isn't present with certain file
types (pipes, terminal devices, and network devices)

 Writes that can block the caller forever if the data can't be accepted
immediately by these same file types

 Opens that block until some condition occurs on certain file types (such as
an open of a terminal device that waits until an attached modem answers
the phone)

 The pause function (which by definition puts the calling process to sleep
until a signal is caught) and the wait function

 Certain ioctl operations
 Some of the interprocess communication functions

Dept of CSE 13

Interrupted System Calls:
 The notable exception to these slow system calls is

anything related to disk I/O.
 One condition that is handled by interrupted system

calls, is when a process initiates a read from a terminal
device and the user at the terminal walks away from device and the user at the terminal walks away from
the terminal for an extended period.

 In this example, the process could be blocked for
hours or days and would remain so unless the system
was taken down.

 The problem with interrupted system calls is that we
now have to handle the error return explicitly.

Dept of CSE 14

Interrupted System Calls:
 To prevent applications from having to handle

interrupted system calls, 4.2BSD introduced the
automatic restarting of certain interrupted system
calls.

 The system calls that were automatically restarted The system calls that were automatically restarted
are ioctl, read, readv, write, writev, wait,
and waitpid.

 The first five of these functions are interrupted by a
signal only if they are operating on a slow
device; wait and waitpid are always interrupted
when a signal is caught.

Dept of CSE 15

kill and raise functions:
 The kill function sends a signal to a process or a

group of processes.
 The raise function allows a process to send a signal to

itself.

 The call raise(signo); is equivalent to the call
kill(getpid(), signo);

Dept of CSE 16

#include <signal.h>
int kill(pid_t pid, int signo);

int raise(int signo);
/* Both return: 0 if OK, −1 on error */

kill and raise functions:
 There are four different conditions for the pid argument

to kill.

Condition Description

pid > 0 The signal is sent to the process whose process ID
is pid.

pid == 0 The signal is sent to all processes whose process group

Dept of CSE 17

pid == 0 The signal is sent to all processes whose process group
ID equals the process group ID of the sender and for
which the sender has permission to send the signal.

pid < 0 The signal is sent to all processes whose process group
ID equals the absolute value of pid and for which the
sender has permission to send the signal.

pid == 1 The signal is sent to all processes on the system for
which the sender has permission to send the signal.

kill and raise functions:
 A process needs permission to send a signal to another

process.
 The superuser can send a signal to any process.
 For other users, the basic rule is that the real or effective

user ID of the sender has to equal the real or effective user ID of the sender has to equal the real or effective
user ID of the receiver.

 POSIX.1 defines signal number 0 as the null signal.
 If the signo argument is 0, then the normal error checking

is performed by kill, but no signal is sent. This is often used
to determine if a specific process still exists.

 If we send the process the null signal and it doesn't
exist, kill returns 1 and errno is set to ESRCH.

Dept of CSE 18

alarm and pause functions:
 The alarm function allows us to set a timer that will expire

at a specified time in the future.
 When the timer expires, the SIGALRM signal is generated.
 If we ignore or don't catch this signal, its default action
is to terminate the process.is to terminate the process.

Dept of CSE 19

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

Returns: 0 or number of seconds until previously set alarm

alarm function:
 The seconds value is the number of clock seconds in the future

when the signal should be generated.
 There is only one of these alarm clocks per process.
 When we call alarm, if a previously registered alarm clock for the

process has not yet expired, the number of seconds left for that
alarm clock is returned as the value of this function. alarm clock is returned as the value of this function.

 That previously registered alarm clock is replaced by the new
value.

 If a previously registered alarm clock for the process has not yet
expired and if the seconds value is 0, the previous alarm clock is
canceled.

 The number of seconds left for that previous alarm clock is still
returned as the value of the function.

Dept of CSE 20

pause function:
 The pause function suspends the calling process until a signal is

caught.

#include <unistd.h>
int pause(void);

 The only time pause returns is if a signal handler is executed
and that handler returns. In that case, pause returns 1
with errno set to EINTR.

Dept of CSE 21

Returns: 1 with errno set to EINTR

abort function:
 The abort function causes abnormal program termination.

 This function sends the SIGABRT signal to the caller. (Processes

#include <stdlib.h>
void abort(void);

This function never returns

 This function sends the SIGABRT signal to the caller. (Processes
should not ignore this signal.)

 abort overrides the blocking or ignoring of the signal by the
process.

 The intent of letting the process catch the SIGABRT is to allow it
to perform any cleanup that it wants to do before the process
terminates.

 If the process doesn't terminate itself, when the signal handler
returns, abort terminates the process.

Dept of CSE 22

sleep function:
#include <unistd.h>
unsigned int sleep(unsigned int seconds);

Returns: 0 or number of unslept seconds

Dept of CSE 23

This function causes the calling process to be suspended until either:
1. The amount of wall clock time specified by seconds has elapsed.
2. A signal is caught by the process and the signal handler returns.

In case 1, the return value is 0.
When sleep returns early, because of some signal being caught (case
2), the return value is the number of unslept seconds (the requested
time minus the actual time slept).

