
COMPILER DESIGN

UNIT - I

B.Tech (CSE) -VI SEM

1Compiler Design

Syllabus

UNIT-I: Introduction: Language Processors, the Structure of a Compiler.
Lexical Analysis: The Role of the Lexical Analyzer, Specification of Tokens,
Recognition of Tokens and the Lexical-Analyzer Generator Lex.

UNIT-II: Syntax Analysis: Definition of CFG, Lexical Versus Syntactic
Analysis, Writing a Grammar- Elimination of Left Recursion, Left
Factoring. Top Down Parsing: Recursive Descent Parsing, First and Follow,
LL(1) Grammars, Non recursive Predictive Parsing, Error Recovery in
Predictive Parsing.

UNIT-III: Bottom-Up Parsing: Bottom Up Parser Classification,
Reductions, Handle Pruning, Shift-Reducing, Conflicts During Shift
Reduce Parsing. Introduction to LR Parsing: Difference between LR and
LL Parsers, Why LR Parsers?, Items and the LR(0) automaton, The LR-
Parsing Algorithm, Constructing SLR Parsing Tables

2Compiler Design

UNIT-IV: More powerful LR parsers: construction of CLR (1), LALR Parsing
tables, Comparison of all Bottom Up approaches. Semantic Analysis: Syntax
Directed Definitions, Evaluation Orders for SDD’s, Applications of SDT.

UNIT-V: Intermediate Code Generation: Variants of Syntax Trees, Three-
Address Code, Control Flow, Back-patching. Run-Time Environments: Storage
Organization, Stack Allocation of Space, Heap Management.

UNIT-VI: Code Generation: Basic Blocks and Flow Graphs, Optimization of
Basic Blocks, Peephole Optimization, Register Allocation and Assignment.
Machine-Independent optimizations: The Principal Sources of Optimizations,
Introduction to Data-Flow Analysis. .

TEXT BOOKS: 1. Compilers, Principles Techniques and Tools- Alfred V Aho,
Monica S Lam, Ravi Sethi, Jeffrey D. Ullman,2nded, Pearson,2007

REFERENCE BOOKS: 1. Principles of compiler design, V. Raghavan, 2nd ed,
TMH, 2011 2. Compiler Design, K. Muneeswaran, Oxford

3Compiler Design

S.No. COURSE OUTCOMES

(After completion of the course, The

Learner is able to)

KNOWLEDG

E LEVEL

CO1 Describe the compilation process and lexical

analyzer
K2

CO2 Construct top down parsing Techniques K3

CO3 Construct bottom up parsing techniques K3

CO4 Construct syntax directed translation K3

CO5 Produce intermediate code generation

process and run time environments K3

CO6 Explain the code generation process. K2

4Compiler Design

UNIT-I: Introduction:

Language Processors

The Structure of a Compiler

 Lexical Analysis: The Role of the Lexical Analyzer

Specification of Tokens

 Recognition of Tokens

 The Lexical-Analyzer Generator Lex.

5Compiler Design

A compiler is a program that can read a program in one language i.e.

source language and translate it into an equivalent program in another

language i.e. target language

Compiler :

6Compiler Design

If the target program is an executable machine-language program, it can
then be called by the user to process inputs and produce outputs

Interpreter :
An interpreter is another common kind of language processor. Instead
of producing a target program as a translation, an interpreter appears to
directly execute the operations specified in the source program on
inputs supplied by the user

7Compiler Design

For example Java language processors combine compilation and interpretation A
Java source program may first be compiled into an intermediate form
called bytecodes. The bytecodes are then interpreted by a virtual machine.

A benefit of this arrangement is that bytecodes compiled on one machine can be
interpreted on another machine, perhaps across a network. In order to achieve
faster processing of inputs to outputs.

8Compiler Design

In addition to a compiler, several other programs may be required to create an
executable target program as shown in Fig

Language Processors:

9Compiler Design

Preprocessor :
The preprocessor may also expand shorthands, called macros, into source language
statements. The modified source program is then fed to a compiler.

Compiler :
The compiler may produce an assembly-language program as its output, because
assembly language is easier to produce as output and is easier to debug.

Assembler :
The assembly language is then processed by a program called an assembler that
produces relocatable machine code as its output.

Linkers and Loaders :
Large programs are often compiled in pieces, so the relocatable machine code may
have to be linked together with other relocatable object files and library files into the
code that actually runs on the machine.
The linker resolves external memory addresses, where the code in one file may refer
to a location in another file.
The loader then puts together all of the executable object files into memory for
execution.

10Compiler Design

Structure of a compiler :

There are two major parts of a compiler:
Analysis
Synthesis

In analysis phase, an intermediate representation is created from the given source
program.

Lexical Analyzer ,Syntax Analyzer and Semantic Analyzer are the parts of this
phase.

In synthesis phase, the equivalent target program is created from this intermediate
representation.

Intermediate Code Generator, Code Generator, and Code Optimizer are the parts
of this phase.

11Compiler Design

Phases of a compiler:

• Compiler consists of 6 phases

•Each phase transforms the source program from one representation
into another representation.

• They communicate with error handlers.

• They communicate with the symbol table.

12Compiler Design

13Compiler Design

Lexical Analysis :

•Lexical analyzer phase is the first phase of compilation process.

•Lexical Analyzer reads the stream of characters making up the source program ang
group the characters into meaningful sequence s called Lexeme

•For each lexeme, the lexical analyzer produces a token of the form that it passes on
to the subsequent phase, syntax analysis

<token-name, attribute-value>

Token-name: an abstract symbol is used during syntax analysis, an
attribute-value: points to an entry in the symbol table for this token

•Puts information about identifiers into the symbol table.

•Example: position =initial + rate * 60

14Compiler Design

Syntax analysis :

•Syntax analysis is the second phase of compilation process.

• It takes tokens as input and generates a parse tree as output. In syntax analysis
phase, the parser checks that the expression made by the tokens is syntactically
correct or not.

•A typical representation is a syntax tree in which each interior node represents
an operation and the children of the node represent the arguments of the
operation

15Compiler Design

Semantic analysis :

•Semantic analysis is the third phase of compilation process.

•It checks whether the parse tree follows the rules of language.

•Semantic analyzer keeps track of identifiers, their types and expressions.

•The output of semantic analysis phase is the annotated tree syntax.

16Compiler Design

Intermediate Code Generation :

•In the intermediate code generation, compiler generates the source code into the
intermediate code.

•Intermediate code is generated between the high-level language and the machine
language.

•The intermediate code should be generated in such a way that you can easily translate
it into the target machine code.

17Compiler Design

Code Optimization :

•Code optimization is used to improve the intermediate code so that the output of
the program could run faster and take less space.
•It removes the unnecessary lines of the code and arranges the sequence of
statements in order to speed up the program execution.

Code Generation :

•Code generation is the final stage of the compilation process. It takes the optimized
intermediate code as input and maps it to the target machine language.
• Code generator translates the intermediate code into the machine code of the
specified computer.

18Compiler Design

19Compiler Design

Lexical Analysis :

•The first phase of a compiler

•The main task of the lexical analyzer is to read the input characters of the source
program, group them into lexemes , and produce as output a sequence of tokens for
each lexeme in the source program.

•The stream of tokens is sent to the parser for syntax analysis

•The lexical analyzer to interact with the symbol table

•One such task is stripping out comments and whitespace (blank, newline, tab, and
perhaps other characters that are used to separate tokens in the input).

20Compiler Design

The role of lexical analyzer :

Lexical Analyzer Parser
Source
program

token

getNextToken

Symbol
table

To semantic
analysis

21Compiler Design

Lexical Analysis Versus Parsing

 Simplicity of design is the most important consideration.

 Compiler efficiency is improved

 Compiler portability is enhanced.

22Compiler Design

Tokens, Patterns and Lexemes

 A token is a pair a token name and an optional token value

 A pattern is a description of the form that the lexemes of a
token may take

 A lexeme is a sequence of characters in the source program
that matches the pattern for a token

23Compiler Design

Example:
In many programming languages, the following classes cover most or all of the

tokens:

Token Informal description Sample lexemes

if

else

comparison

id

number

literal

Characters i, f

Characters e, l, s, e

< or > or <= or >= or == or !=

Letter followed by letter and digits

Any numeric constant

Anything but “ sorrounded by “

if

else

<=, !=

pi, score, D2

3.14159, 0, 6.02e23

“core dumped”

printf(“total = %d\n”, score);

24Compiler Design

Attributes for tokens
 E = M * C ** 2

 <id, pointer to symbol table entry for E>
 <assign-op>
 <id, pointer to symbol table entry for M>
 <mult-op>
 <id, pointer to symbol table entry for C>
 <exp-op>
 <number, integer value 2>

25Compiler Design

Lexical errors
 Some errors are out of power of lexical analyzer to

recognize:

 fi (a == f(x)) …

 However it may be able to recognize errors like:

 d = 2r

 Such errors are recognized when no pattern for tokens
matches a character sequence

26Compiler Design

Error recovery
 Panic mode: successive characters are ignored until we

reach to a well formed token

 Delete one character from the remaining input

 Insert a missing character into the remaining input

 Replace a character by another character

 Transpose two adjacent characters

27Compiler Design

Specification of tokens

 In theory of compilation regular expressions are used to
formalize the specification of tokens

 Regular expressions are means for specifying regular
languages

 Example:

 Letter_(letter_ | digit)*

 Each regular expression is a pattern specifying the form of
strings

28Compiler Design

Regular expressions
 Ɛ is a regular expression, L(Ɛ) = {Ɛ}

 If a is a symbol in ∑then a is a regular expression, L(a) = {a}

 (r) | (s) is a regular expression denoting the language L(r) ∪ L(s)

 (r)(s) is a regular expression denoting the language L(r)L(s)

 (r)* is a regular expression denoting (L9r))*

 (r) is a regular expression denting L(r)

29Compiler Design

Regular definitions
d1 -> r1

d2 -> r2

…

dn -> rn

Example:

letter_ -> A | B | … | Z | a | b | … | Z | _

digit -> 0 | 1 | … | 9

id -> letter_ (letter_ | digit)*

30Compiler Design

Extensions
 One or more instances: (r)+

 Zero of one instances: r?

 Character classes: [abc]

 Example:

 letter_ -> [A-Za-z_]

 digit -> [0-9]

 id -> letter_(letter|digit)*

31Compiler Design

Recognition of tokens
Starting point is the language grammar to understand the tokens:

stmt -> if expr then stmt

| if expr then stmt else stmt

| Ɛ

expr -> term relop term

| term

term -> id

| number

32Compiler Design

Recognition of tokens (cont.)
 The next step is to formalize the patterns:

digit -> [0-9]

Digits -> digit+

number -> digit(.digits)? (E[+-]? Digit)?

letter -> [A-Za-z_]

id -> letter (letter|digit)*

If -> if

Then -> then

Else -> else

Relop -> < | > | <= | >= | = | <>

 We also need to handle whitespaces:

ws -> (blank | tab | newline)+

33Compiler Design

Transition diagrams

Transition diagram for relop

34Compiler Design

Transition diagrams (cont.)

Transition diagram for reserved words and identifiers

35Compiler Design

Transition diagrams (cont.)

Transition diagram for unsigned numbers

36Compiler Design

Transition diagrams (cont.)

 Transition diagram for whitespace

37Compiler Design

 LEX is a tool that allows one to specify a Lexical Analyzer by specifying RE
to describe patterns for tokens.

 Input Notation-Lex language(Specification)

 Lex Compiler-Transforms Input patterns into a Transition diagram and
generates code in a file called lex.yy.c

Lexical Analyzer Generator - Lex

38Compiler Design

Lexical analyzer with LEX

Lexical Compiler
Lex Source program

lex.l lex.yy.c

C

compiler
lex.yy.c a.out

a.outInput stream Sequence

of tokens

39Compiler Design

declarations
%%
translation rules
%%
auxiliary functions

Structure of Lex programs :

Lex program has the following form:

•The translation rules each have the form
Pattern {Action}

40Compiler Design

• The declarations section includes declarations of variables, manifest

constants (identifiers declared to stand for a constant, e.g., the name of a

token), and regular definitions.

• The translation rules each have the form

• Pattern { Action }

• pattern is a regular expression

•Action-Fragment of code written in C.

• Third Section-holds whatever additional functions are used in the actions.

•Alternatively, these functions can be compiled separately and loaded with the

lexical analyser

41Compiler Design

Conflict Resolution in Lex

There are two rules that Lex uses to decide on the proper lexeme to

select, when several prefixes of the input match one or more

patterns:

1. Always prefer a longer prefix to a shorter prefix.

2. If the longest possible prefix matches two or more

patterns, prefer the pattern listed first in the Lex program.

42Compiler Design

 Lex automatically reads one character ahead of the last character that forms

the selected lexeme, and then retracts the input so only the lexeme itself is

consumed from the input.

 However, sometimes, we want a certain pattern to be matched to the input only

when it is followed by a certain other characters. If so, we may use the slash in a

pattern to indicate the end of the part of the pattern that matches the lexeme.

 What follows / is additional pattern that must be matched before we can decide

that the token in question was seen, but what matches this second pattern is not

part of the lexeme.

The Lookahead Operator

43Compiler Design

Thank you

44Compiler Design

