Run-time Environments

Status

* We have so far covered the front-end phases
- Lexical analysis
- Parsing
- Semantic analysis
* Next come the back-end phases
- Code generation
- Optimization
- Register allocation
- Instruction scheduling

- We will examine code generation first . . .

Compiler Design | (2011)

Run-time environments

- Before discussing code generation, we need to
understand what we are trying to generate

 There are a number of standard techniques
for structuring executable code that are
widely used

Compiler Design | (2011)

Outline

* Management of run-time resources

« Correspondence between static (compile-time)
and dynamic (run-time) structures

- Storage organization

Compiler Design | (2011)

Run-time Resources

- Execution of a program is initially under the
control of the operating system (OS)

* When a program is invoked:
- The OS allocates space for the program
- The code is loaded into part of this space

- The OS jumps to the entry point of the program
(i.e., to the beginning of the "main” function)

Compiler Design | (2011)

Memory Layout

Low Address
Code

Memory

Other Space

High Address

Compiler Design | (2011)

Notes

* By fradition, pictures of run-time memory
organization have:
- Low addresses at the top
- High addresses at the bottom
- Lines delimiting areas for different kinds of data

* These pictures are simplifications
- E.g., not all memory need be contiguous

Compiler Design | (2011)

Organization of Code Space

* Usually, code is generated one function at a
time. The code area thus is of the form:

Code for functionl | entry point

Code for function 2

“— entry point

«— entry point

Code for function n

* Careful layout of code within a function can improve
i-cache utilization and give better performance

+ Careful attention in the order in which functions are
processed can also improve i-cache utilization

Compiler Design | (2011)

What is Other Space?

* Holds all data needed for the program's
execution

* Other Space = Data Space

- Compiler is responsible for:
- Generating code
- Orchestrating the use of the data area

Compiler Design | (2011)

Code Generation Goals

-+ Two goals:
- Correctness
- Speed

* Most complications in code generation come
from trying to be fast as well as correct

Compiler Design | (2011)

10

Assumptions about Flow of Control

(1) Execution is sequential; at each step, control
is at some specific program point and moves
from one point to another in a well-defined
order

(2) When a procedure is called, control
eventually returns to the point immediately
following the place where the call was made

Do these assumptions always hold?

Compiler Design | (2011)

1

Language Issues that affect the Compiler

- Can procedures be recursive?

* What happens to the values of the locals on return
from a procedure?

* Can a procedure refer to non-local variables?
* How are parameters to a procedure passed?
+ Can procedures be passed as parameters?

- Can procedures be refurned as results?

« Can storage be allocated dynamically under program
control?

* Must storage be deallocated explicitly?

Compiler Design | (2011)

12

Activations

* Aninvocation of procedure P is an activation
of P

- The /ifetime of an activation of P is
- All the steps to execute P
- Including all the steps in procedures P calls

Compiler Design | (2011)

13

Lifetimes of Variables

» The /ifetime of a variable x is the portion of
execution in which x is defined

* Note that:
- Lifetime is a dynamic (run-time) concept
- Scope is (usually) a static concept

Compiler Design | (2011) 14

Activation Trees

* Assumption (2) requires that when P calls Q,
then Q returns before P does

+ Lifetimes of procedure activations are thus
either disjoint or properly nested

- Activation lifetimes can be depicted as a tree

Compiler Design | (2011)

15

Example 1

gO: int { return 42; }
TO: Int { return gQ; }
main() { 90O; fO:; }

main
‘/\
9 f
/

9

Compiler Design | (2011) 16

Example 2

g(O: int { return 42; }
f(x:int): int {
iIf X = 0 then return gQ;
else return f(x - 1);

}
main() { ¥(3); }

What is the activation tree for this example?

Compiler Design | (2011)

17

Notes

* The activation tree depends on run-time
behavior

* The activation tree may be different for
every program input

Since activations are properly nested, a (contro/)
stack can track currently active procedures

- push info about an activation at the procedure
entry

- pop the info when the activation ends; i.e., at the
return from the call

Compiler Design | (2011) 18

Example

gO: int { return 42; }
TfO: Int { return gO; }
main() { 90O; fO; }

main Stack

main

Compiler Design | (2011)

19

Example

gO: int { return 42; }
fO: Int { return gQO; }
main() { 90O; fO; }

main Stack

main

Compiler Design | (2011) 20

Example Example

g(O: Int { return 42; } gO: int { return 42; }
TO: int { return gO; } TO: int { return gO; }
main() { 9OQ; fO; } main() { 9Q; fO: }
main Stack main Stack
- main - main
g9 9 f
f
Compiler Design | (2011) 21 Compiler Design | (2011) 22
Example Revised Memory Layout
gO: int { return 42; }
fQ: int { return gQ; } Low Address
main() { 9OQ; fO; } Code
Memory
)qin Stack Stack
\ ma/-” 1
9 f
\ f |
g High Address

Compiler Design | (2011) 23 Compiler Design | (2011) 24

Activation Records

* The information needed to manage a single
procedure activation is called an activation
record (AR) or a stack frame

* If a procedure F calls G, then G's activation
record contains a mix of info about F and G

Compiler Design | (2011) 25

What is in G's AR when F calls 6?

- F is "suspended” until G completes, at which
point F resumes. G's AR contains information
needed to resume execution of F.

 G's AR may also contain:
- G's return value (needed by F)
- Actual parameters to G (supplied by F)
- Space for G's local variables

Compiler Design | (2011)

26

The Contents of a Typical AR for 6

- Space for G's return value

* Actual parameters

. (optional) Pointer to the previous activation record
- The control link, points to the AR of caller of G

. (optional) Access link for access to non-local hames
- Points to the AR of the function that statically
contains G

Machine status prior to calling G
- Retfurn address, values of registers & program counter
- Local variables

* Other temporary values used during evaluation

Compiler Design | (2011) 27

Example 2, Revisited

g(O: int { return 42; }
f(x:int): int {
iIT x=0 then return g(Q);
else return f(x - 1); (™)

s

main() { f3);(*) }

AR for f: [result
 argument
control link
return address

Compiler Design | (2011)

28

Stack After Two Calls to f Notes
= main() has no argument or local variables and
main returns no result; its AR is uninteresting
[(resun 1 * (*) and (**) are return addresses (continuation
3 points) of the invocations of ()
- The return address is where execution resumes
o after a procedure call finishes
It . . .
4 (rezsu) » This is only one of many possible AR designs
- Would also work for C, Pascal, FORTRAN, etc.
(**)
Compiler Design | (2011) 29 Compiler Design | (2011)
The Main Point Example 2, continued
The picture shows the state after the call to the
- The compiler must determine, at compile-time, 2nd invocation of ¥() returns
the layout of activation records and generate main
code that correctly accesses locations in the) £ (result) |
activation record (as displacements from sp) 3
Thus, the AR layout and the code generator *)
must be designed together! | 42
2
(**)
Compiler Design | (2011) 31 Compiler Design | (2011)

Discussion

* The advantage of placing the return value 1st
in a frame is that the caller can find it at a
fixed offset from its own frame

* There is nothing magical about this run-time
organization
- Can rearrange order of frame elements
- Can divide caller/callee responsibilities differently

- Anorganization is better if it improves execution
speed or simplifies code generation

Compiler Design | (2011) 33

Discussion (Cont.)

* Real compilers hold as much of the frame as
possible in registers

- Especially the function result and (some of) the
arguments

Compiler Design | (2011) 34

Storage Allocation Strategies for Activation
Records (1)

Static Allocation (Fortran 77)

- Storage for all data objects laid out at compile
time

- Can be used only if size of data objects and
constraints on their position in memory can be
resolved at compile time = no dynamic structures

- Recursive procedures are restricted, since all

activations of a procedure must share the same
locations for local names

Compiler Design | (2011) 35

Storage Allocation Strategies for Activation
Records (2)

Stack Allocation (Pascal, €)

- Storage organized as a stack
- Activation record pushed when activation begins
and popped when it ends

- Cannot be used if the values of local hames must be
retained when the evaluation ends or if the called
invocation outlives the caller

Heap Allocation (Lisp, ML)

- Activation records may be allocated and
deallocated in any order

- Some form of garbage collection is needed to
reclaim free space

Compiler Design | (2011) 36

Globals

- All references to a global variable point to the
same object
- Can't store a global in an activation record

* Globals are assigned a fixed address once

- Variables with fixed address are “statically
allocated"

- Depending on the language, there may be
other statically allocated values
- e.g., static variables in C

Compiler Design | (2011) 37

Memory Layout with Static Data

Memory Global/Static Data

Low Address
Code

High Address

Compiler Design I (2011) 38

Heap Storage

* A value that outlives the procedure that
creates it cannot be kept in the AR

foo() { new bar; }
The bar value must survive deallocation of foo’s AR

+ Languages with dynamically allocated data use
a heap to store dynamic data

Compiler Design | (2011) 39

Review of Runtime Organization

The code area contains object code

- For most languages, fixed size and read only

The static area contains data (not code) with
fixed addresses (e.g., global data)

- Fixed size, may be readable or writable

The stack contains an AR for each currently
active procedure

- Each AR usually has fixed size, contains locals
The heap contains all other data

- InC, heap is managed explicitly by malloc() and free()

- In Java, heap is managed by new() and garbage collection

- In ML, both allocation and deallocation in the heap is managed
implicitly

Compiler Design | (2011) 40

Notes

* Both the heap and the stack grow

Memory Layout with Heap

Low Address
* Must take care so that they don't grow into Code
each other
Memory Global/Static Data
+ Solution: start heap and stack at opposite Stack
ends of memory and let them grow towards | L. 1
each other
Heap High Address
Compiler Design | (2011) 41 Compiler Design | (2011) 42
Data Layout Alignment

* Low-level details of computer architecture are
important in laying out data for correct code
and maximum performance

» Chief among these concerns is alignment of
data

Compiler Design | (2011) 43

* Most modern machines are 32 or 64 bit
- 8 bitsina byte
- 4 or 8 bytes in a word
- Machines are either byte or word addressable

» Data is word-aligned if it begins at a word
boundary

Most machines have some alignment restrictions
(Or performance penalties for poor alignment)

Compiler Design | (2011) 44

Alignment (Cont.)

Example: A string:
"Hello"
Takes 5 characters (without the terminating \0)

* To word-align next datum on a 32-bit machine,
add 3 "padding” characters to the string

* The padding is not part of the string, it's just
unused memory

Compiler Design | (2011)

45

